
Temporal Difference Methods

for Prediction

Rupam Mahmood

February 28, 2020R L
IA

&

caused this? Do you think this always occurs, or might it be a function of how the approximate value
function was initialized?

Answer:

This is based on Rupam’s PhD thesis (Section 9.7). I don’t understand this very well and I’m unable
to explain this in a simple and intuitive manner. These forms of oscillations are charecteristic for TD
algorithm, since the matrix A in the TD update equations is assymetric and as a result, the imaginary
parts of its eigenvalues are non–zero. This causes the oscillations seen in the figure. I don’t think it
would depend on how the value function was initialized.

Q5

(Exercise 6.7 S&B) Design an o↵-policy version of the TD(0) update that can be used with arbitrary
target policy ⇡ and covering behavior policy b, using at each step t the importance sampling ratio ⇢t:t

(5.3).

Answer:

In this question, we only update the target (R + �V (S0)) of the TD–update. We’ll ignore the stationary
state distribution. This setting is also called the excursion setting. We begin by writing the Bellman
equation and then modifying it to obtain the o↵–policy TD update.

V⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)[r + �V⇡(s0)]

⌘ E⇡,P [Rt+1 + �V (St+1)|St = s]

=
X

a

b(a|s) ⇡(a|s)
b(a|s)| {z }

⇢t:t

X

s0,r

p(s0, r|s, a)[r + �V⇡(s0)]

⌘ Eb,P [⇢t:t(Rt+1 + �V (St+1))|St = s].

The last line leads to the following o↵–policy TD update:

V (St) = V (St) + ↵[⇢t:t(Rt+1 + �V (St+1)) � V (St)]. (1)

There is an alternate algorithm as well. We write E⇡,P [�t|St = s] ⌘ E⇡,P [Rt+1 +�V (St+1)�V (St)] =
E⇡,P [⇢t:t�t|St = s]. This leads to the following alternate TD algorithm:

V (St) = V (St) + ↵⇢t:t[Rt+1 + �V (St+1) � V (St)]. (2)

Note that the expected update, under the behavior policy, in both Eq. 1 and 2 is same:

Eb,P [⇢t:t(Rt+1 + �V (St+1)) � V (St)|St] = Eb,P [⇢t:t(Rt+1 + �V (St+1) � V (St))|St].

It is straightforward to see this by using the linearity of the expectation operator and the fact that
Eb,p[⇢t|St] =

P
a b(a|s)⇡(a|s)

b(a|s) = 1.

Q6

Modify the Tabular TD(0) algorithm for estimating v⇡, to estimate q⇡.

3

ρt:T−1
·=

P(At, St+1, At+1, ⋯, ST |St, At:T−1 ∼ π)
P(At, St+1, At+1, ⋯, ST |St, At:T−1 ∼ b)

=
∏T−1

k=t π(Ak |Sk)

∏T−1
k=t b(Ak |Sk)

on-policy sample-average MC: At ∼ π ⟹ Eπ [Gt |St = s] = vπ(s) → V(s) ·=
∑t∈𝒯(s) Gt

|𝒯(s) |

off-policy sample-average MC: At ∼ b ⟹ Eb [ρt:T−1Gt |St = s] = vπ(s) → V(s) ·=
∑t∈𝒯(s) ρt:T−1Gt

|𝒯(s) |

On-policy constant-α MC: VMC(St) ← VMC(St) + α [Gt − VMC(St)]

Off-policy constant-α MC: ?

On-policy TD(0): VTD(St) ← VTD(St) + α [Rt+1 + γVTD(St+1) − VTD(St)]
Off-policy TD(0): ?

0 1
+1

-1

120 Chapter 6: Temporal-Di�erence Learning

where Gt is the actual return following time t, and ↵ is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V (St) (only then is
Gt known), TD methods need to wait only until the next time step. At time t + 1 they
immediately form a target and make a useful update using the observed reward Rt+1 and
the estimate V (St+1). The simplest TD method makes the update

V (St) V (St) + ↵
�
Rt+1 + �V (St+1)� V (St)

�
(6.2)

immediately on transition to St+1 and receiving Rt+1. In e↵ect, the target for the Monte
Carlo update is Gt, whereas the target for the TD update is Rt+1 + �V (St+1). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(�) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy ⇡ to be evaluated
Algorithm parameter: step size ↵ 2 (0, 1]
Initialize V (s), for all s 2 S+, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A action given by ⇡ for S
Take action A, observe R, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S S0

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.9))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
v⇡(St+1) is not known and the current estimate, V (St+1), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of

Answer:

Tabular TD(0) for estimating q⇡

Input: the policy ⇡ to be evaluated
Algorithm parameter: step size ↵ 2 (0, 1]
Initialize Q(s, a), for all s 2 S+, a 2 A(s), arbitrarily except that Q(terminal, ·) = 0

Loop for each episode:
Initialize S
Choose action A given by ⇡ for S
Loop for each step of episode

Take action A, observe R, S0

Choose action A0 given by ⇡ for S0

Q(S, A) Q(S, A) + ↵[R + �Q(S0, A0)�Q(S, A)]
S S0; A A0;

until S is terminal.

Q7

Suppose that in an environment, state transitions are deterministic and that reward is bounded so that
Rmin = 0 and Rmax = 1, with E[Rt] = 0.5. Find the maximum and minimum possible TD error
�t = Rt+1 + �V (St+1)� V (St), where � = 0.9 and V = v⇡ with deterministic policy ⇡.

Answer:

We know that the for the exact value function v⇡,

v⇡(St) = E[Rt+1 + �v⇡(St+1)] = E[Rt+1] + �v⇡(St+1).

Therefore, we can write

�t = Rt+1 + �v⇡(St+1)� v⇡(St)

= Rt+1 + �v⇡(St+1)� E[Rt+1]� �v⇡(St+1)

= Rt+1 � E[Rt+1]

= Rt+1 � 0.5.

4

Live demo of TD updates

