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Worksheet questions:

Worksheet 7

Q1

(Exercise 6.1 S&B) If V changes during the episode, then

Gt � V (St) =
T�1X

k=t

�k�1�k

only holds approximately; what would the di↵erence be between the two sides? Let Vt denote the array
of state values used at time t in the TD error and in the TD update. Redo the derivation to determine
the additional amount that must be added to the sum of TD errors in order to equal the Monte Carlo
error.

Answer:

With the given notation, �t = Rt+1 + �Vt(St+1) � Vt(St). The required derivation is as follows:

Gt � Vt(St) = Rt+1 + �Gt+1 � Vt(St) + �Vt(St+1) � �Vt(St+1)

= �t + �(Gt+1 � Vt(St+1))

= �t + �(Gt+1 � Vt+1(St+1)) + �(Vt+1(St+1) � Vt(St+1))

= �t + �
⇥
�t+1 + �(Gt+2 � Vt+2(St+2)) + �(Vt+2(St+2) � Vt+1(St+2))

⇤
+ �(Vt+1(St+1) � Vt(St+1))

= �t + ��t+1 + �2(Gt+2 � Vt+2(St+2)) + �2(Vt+2(St+2) � Vt+1(St+2)) + �(Vt+1(St+1) � Vt(St+1))
...

= �t + ��t+1 + · · · + �T�t�1�T�1 + �T�t(Gt � VT (ST ))

+�T�t(VT (ST ) � VT�1(ST )) + · · · + �(Vt+1(St+1) � Vt(St+1))

=
T�1X

k=t

�k�t�k + �
T�1X

k=t

�k�t(Vk+1(Sk+1) � Vk(Sk+1)).

If the learning rate is small, then Vk+1(Sk+1) ⇡ Vk(Sk+1), and the equality given in the question
would hold.

Q2

(Exercise 6.3 S&B) From the results shown in the left graph of the random walk example it appears
that the first episode results in a change in only V (A). What does this tell you about what happened
on the first episode? Why was only the estimate for this one state changed? By exactly how much was
it changed?

6.2. Advantages of TD Prediction Methods 125

Example 6.2 Random Walk

In this example we empirically compare the prediction abilities of TD(0) and
constant-↵ MC when applied to the following Markov reward process:
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A Markov reward process, or MRP, is a Markov decision process without actions.
We will often use MRPs when focusing on the prediction problem, in which there is
no need to distinguish the dynamics due to the environment from those due to the
agent. In this MRP, all episodes start in the center state, C, then proceed either left
or right by one state on each step, with equal probability. Episodes terminate either
on the extreme left or the extreme right. When an episode terminates on the right,
a reward of +1 occurs; all other rewards are zero. For example, a typical episode
might consist of the following state-and-reward sequence: C, 0,B, 0,C, 0,D, 0,E, 1.
Because this task is undiscounted, the true value of each state is the probability of
terminating on the right if starting from that state. Thus, the true value of the
center state is v⇡(C) = 0.5. The true values of all the states, A through E, are
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The left graph above shows the values learned after various numbers of episodes
on a single run of TD(0). The estimates after 100 episodes are about as close as
they ever come to the true values—with a constant step-size parameter (↵ = 0.1
in this example), the values fluctuate indefinitely in response to the outcomes
of the most recent episodes. The right graph shows learning curves for the two
methods for various values of ↵. The performance measure shown is the root
mean-squared (RMS) error between the value function learned and the true value
function, averaged over the five states, then averaged over 100 runs. In all cases the
approximate value function was initialized to the intermediate value V (s) = 0.5, for
all s. The TD method was consistently better than the MC method on this task.

1

TD(0): V(St) ← V(St) + α [Rt+1 + γV(St+1) − V(St)]

Equivalently: Vt+1(St) ·= Vt(St) + α [Rt+1 + γVt(St+1) − Vt(St)]
δt

Vt+1(s) ·= Vt(s), ∀s ≠ St
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Answer:

The initial estimate V (A) = 0.5. Since, the estimate decreases, the episode must have ended in the left
terminal state. Let us denote the left terminal state by L. Then the last transition of the episode is:
(S = A, R = 0, S0 = L). The update corresponding to this transition is:

V (A) = V (A) + 0.1[0 + V (L) � V (A)]

= 0.5 + 0.1[0 + 0 � 0.5]

= 0.45.

For all other transitions (S, R = 0, S0) with S0 /2 {L, R} with R denoting the right terminal state, the
updates would be: V (S) = V (S) + 0.1[0 + V (S0) � V (S)] = V (S), since at the beginning of the episode
V (S) = V (S0) = 0.5.

Q3

(Exercise 6.4 S&B) The specific results shown in the right graph of the random walk example are
dependent on the value of the step-size parameter, ↵. Do you think the conclusions about which algorithm
is better would be a↵ected if a wider range of ↵ values were used? Is there a di↵erent, fixed value of ↵
at which either algorithm would have performed significantly better than shown? Why or why not?

Answer:

Most likely the conclusion that TD is better than Monte Carlo on this method won’t change with a
wider range of stepsizes. For the MC curve, we can see that the final performance of MC method is
best at an intermediate value of ↵ = 0.03. This is characteristic of performance against parameters
(parameter studies) — an intermediate value of parameters performs better than extreme values. As a
result, trying higher and smaller values of ↵ won’t likely bring a big di↵erence in the final performance
of the MC method. And since the best performance of MC for ↵ = 0.03 is still worse than the worst
TD, the conclusions should remain the same that TD is superior to MC in this setting. Similarly, for
TD, tuning the stepsize wouldn’t create a big di↵erence in terms of performance. For TD this answer is
vague. Maybe add a discussion about TD bounds.

Q4

(Challenge Question) (Exercise 6.5 S&B) In the right graph of the random walk example, the RMS
error of the TD method seems to go down and then up again, particularly at high ↵’s. What could have
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caused this? Do you think this always occurs, or might it be a function of how the approximate value
function was initialized?

Answer:

This is based on Rupam’s PhD thesis (Section 9.7). I don’t understand this very well and I’m unable
to explain this in a simple and intuitive manner. These forms of oscillations are charecteristic for TD
algorithm, since the matrix A in the TD update equations is assymetric and as a result, the imaginary
parts of its eigenvalues are non–zero. This causes the oscillations seen in the figure. I don’t think it
would depend on how the value function was initialized.

Q5

(Exercise 6.7 S&B) Design an o↵-policy version of the TD(0) update that can be used with arbitrary
target policy ⇡ and covering behavior policy b, using at each step t the importance sampling ratio ⇢t:t

(5.3).

Answer:

In this question, we only update the target (R + �V (S0)) of the TD–update. We’ll ignore the stationary
state distribution. This setting is also called the excursion setting. We begin by writing the Bellman
equation and then modifying it to obtain the o↵–policy TD update.

V⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)[r + �V⇡(s0)]

⌘ E⇡,P [Rt+1 + �V (St+1)|St = s]

=
X

a

b(a|s) ⇡(a|s)
b(a|s)| {z }

⇢t:t

X

s0,r

p(s0, r|s, a)[r + �V⇡(s0)]

⌘ Eb,P [⇢t:t(Rt+1 + �V (St+1))|St = s].

The last line leads to the following o↵–policy TD update:

V (St) = V (St) + ↵[⇢t:t(Rt+1 + �V (St+1)) � V (St)]. (1)

There is an alternate algorithm as well. We write E⇡,P [�t|St = s] ⌘ E⇡,P [Rt+1 +�V (St+1)�V (St)] =
E⇡,P [⇢t:t�t|St = s]. This leads to the following alternate TD algorithm:

V (St) = V (St) + ↵⇢t:t[Rt+1 + �V (St+1) � V (St)]. (2)

Note that the expected update, under the behavior policy, in both Eq. 1 and 2 is same:

Eb,P [⇢t:t(Rt+1 + �V (St+1)) � V (St)|St] = Eb,P [⇢t:t(Rt+1 + �V (St+1) � V (St))|St].

It is straightforward to see this by using the linearity of the expectation operator and the fact that
Eb,p[⇢t|St] =

P
a b(a|s)⇡(a|s)

b(a|s) = 1.

Q6

Modify the Tabular TD(0) algorithm for estimating v⇡, to estimate q⇡.

3

ρt:T−1
·=

P(At, St+1, At+1, ⋯, ST |St, At:T−1 ∼ π)
P(At, St+1, At+1, ⋯, ST |St, At:T−1 ∼ b)

=
∏T−1

k=t π(Ak |Sk)

∏T−1
k=t b(Ak |Sk)
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120 Chapter 6: Temporal-Di�erence Learning

where Gt is the actual return following time t, and ↵ is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V (St) (only then is
Gt known), TD methods need to wait only until the next time step. At time t + 1 they
immediately form a target and make a useful update using the observed reward Rt+1 and
the estimate V (St+1). The simplest TD method makes the update

V (St) V (St) + ↵
�
Rt+1 + �V (St+1)� V (St)

�
(6.2)

immediately on transition to St+1 and receiving Rt+1. In e↵ect, the target for the Monte
Carlo update is Gt, whereas the target for the TD update is Rt+1 + �V (St+1). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(�) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy ⇡ to be evaluated
Algorithm parameter: step size ↵ 2 (0, 1]
Initialize V (s), for all s 2 S+, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A action given by ⇡ for S
Take action A, observe R, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S  S0

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.9))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
v⇡(St+1) is not known and the current estimate, V (St+1), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of

Answer:

Tabular TD(0) for estimating q⇡

Input: the policy ⇡ to be evaluated
Algorithm parameter: step size ↵ 2 (0, 1]
Initialize Q(s, a), for all s 2 S+, a 2 A(s), arbitrarily except that Q(terminal, ·) = 0

Loop for each episode:
Initialize S
Choose action A given by ⇡ for S
Loop for each step of episode

Take action A, observe R, S0

Choose action A0 given by ⇡ for S0

Q(S, A) Q(S, A) + ↵[R + �Q(S0, A0)�Q(S, A)]
S  S0; A A0;

until S is terminal.

Q7

Suppose that in an environment, state transitions are deterministic and that reward is bounded so that
Rmin = 0 and Rmax = 1, with E[Rt] = 0.5. Find the maximum and minimum possible TD error
�t = Rt+1 + �V (St+1)� V (St), where � = 0.9 and V = v⇡ with deterministic policy ⇡.

Answer:

We know that the for the exact value function v⇡,

v⇡(St) = E[Rt+1 + �v⇡(St+1)] = E[Rt+1] + �v⇡(St+1).

Therefore, we can write

�t = Rt+1 + �v⇡(St+1)� v⇡(St)

= Rt+1 + �v⇡(St+1)� E[Rt+1]� �v⇡(St+1)

= Rt+1 � E[Rt+1]

= Rt+1 � 0.5.
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