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Prediction as estimating value functions

Predictions are building blocks for many control methods

The usefulness of predictions goes beyond control

Forming a predictive question: How many times will you get honked at today?

(Pseudo-) reward: +1 for each honk

Termination of episode: end of the day

Behavior: the way you drive (think of your average speed, frequency of changing lanes, etc.)

Can be answered by estimating vπ(s) ·= Eπ[Gt |St = s]



Much of prediction is about estimating expected values
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Much of prediction is about estimating expected values

vπ(s) ·= Eπ[Gt |St = s]

Dynamic 
programming Sample-based

E.g., Iterative 
policy evaluation

Monte Carlo 
(MC)



Monte Carlo estimator for on-policy prediction: V(s) ·=
∑t∈𝒯(s) Gt

|𝒯(s) |

Incremental Monte Carlo estimator: V(St) ← V(St) +
1

N(St)
[Gt − V(St)]

TD(0): V(St) ← V(St) + α [Rt+1 + γV(St+1) − V(St)]

From MC to TD(0)

Constant-α MC: V(St) ← V(St) + α [Gt − V(St)]



Unlike Monte Carlo, TD(0) works online

120 Chapter 6: Temporal-Di↵erence Learning

where Gt is the actual return following time t, and ↵ is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V (St) (only then is
Gt known), TD methods need to wait only until the next time step. At time t + 1 they
immediately form a target and make a useful update using the observed reward Rt+1 and
the estimate V (St+1). The simplest TD method makes the update

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
(6.2)

immediately on transition to St+1 and receiving Rt+1. In e↵ect, the target for the Monte
Carlo update is Gt, whereas the target for the TD update is Rt+1 + �V (St+1). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(�) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy ⇡ to be evaluated
Algorithm parameter: step size ↵ 2 (0, 1]
Initialize V (s), for all s 2 S

+, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A action given by ⇡ for S
Take action A, observe R, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S  S0

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.9))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
v⇡(St+1) is not known and the current estimate, V (St+1), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of

Say an oracle gives us return G from future at each step. Replace R + γV(S′�) with G .
This is an online but acausal Monte Carlo method. Will it be first-visit or every-visit?



From Monte Carlo error to TD error

TD(0): V(St) ← V(St) + α [Rt+1 + γV(St+1) − V(St)]
TD error: δt

Δt =
T−1

∑
k=t

γk−tδk

Constant-α MC: V(St) ← V(St) + α [Gt − V(St)]
MC error: Δt

Based on this equivalence, can you think of an implementation of Monte Carlo method that computes 
partial updates in an online manner and completes the full update at the end of the episode?


