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1. (Exercise 5.4 S&B) The pseudocode for Monte Carlo ES is ine�cient because, for each
state-action pair, it maintains a list of all returns and repeatedly calculates their mean.
How can we modify the algorithm to have incremental updates for each state-action pair?

Answer:
Q(St, At) Q(St, At) + ↵(G�Q(St, At))

If ↵ = 1
N(S) , this update computes the sample mean.

2. (Exercise 5.5 S&B) Consider an MDP with a single nonterminal state s and a single action
that transitions back to s with probability p and transitions to the terminal state with
probability 1 � p. Let the rewards be +1 on all transitions, and let � = 1. Suppose
you observe one episode that lasts 10 steps, with return of 10. What is the (every-visit)
Monte-carlo estimator of the value of the nonterminal state s?

Every-Visit Monte Carlo prediction, for estimating V

Input: a policy     to be evaluatedπ
Initialize:

V(s) ∈ ℝ, arbitrarily, for all s ∈ S
Retu rns(s) ←an empty list, for all s ∈ S

Loop forever (for each episode):
π : S0, A0, R1, S1 . . . , ST−1, AT−1, RTGenerate an episode following

G ← 0
Loop for each step of episode, t = T −1, T −2, . . . , 0

G ← γG + Rt+ 1
Append     toG Retu rns(St)
V(St) ← average(Retu rns(St))

Answer:

(a) first-visit: V (s) = 10.

(b) every-visit: V (s) = 10 + 9 + 8 + · · ·+ 1 = (10)(11)/2 = 55.
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5.3. Monte Carlo Control 99

Monte Carlo ES (Exploring Starts), for estimating ⇡ ⇡ ⇡⇤

Initialize:
⇡(s) 2 A(s) (arbitrarily), for all s 2 S

Q(s, a) 2 R (arbitrarily), for all s 2 S, a 2 A(s)
Returns(s, a) empty list, for all s 2 S, a 2 A(s)

Loop forever (for each episode):
Choose S0 2 S, A0 2 A(S0) randomly such that all pairs have probability > 0
Generate an episode from S0, A0, following ⇡: S0, A0, R1, . . . , ST�1, AT�1, RT

G 0
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

Unless the pair St, At appears in S0, A0, S1, A1 . . . , St�1, At�1:
Append G to Returns(St, At)
Q(St, At) average(Returns(St, At))
⇡(St) argmax

a
Q(St, a)

Exercise 5.4 The pseudocode for Monte Carlo ES is ine�cient because, for each state–
action pair, it maintains a list of all returns and repeatedly calculates their mean. It would
be more e�cient to use techniques similar to those explained in Section 2.4 to maintain
just the mean and a count (for each state–action pair) and update them incrementally.
Describe how the pseudocode would be altered to achieve this. ⇤

In Monte Carlo ES, all the returns for each state–action pair are accumulated and
averaged, irrespective of what policy was in force when they were observed. It is easy
to see that Monte Carlo ES cannot converge to any suboptimal policy. If it did, then
the value function would eventually converge to the value function for that policy, and
that in turn would cause the policy to change. Stability is achieved only when both
the policy and the value function are optimal. Convergence to this optimal fixed point
seems inevitable as the changes to the action-value function decrease over time, but has
not yet been formally proved. In our opinion, this is one of the most fundamental open
theoretical questions in reinforcement learning (for a partial solution, see Tsitsiklis, 2002).

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo ES to
blackjack. Because the episodes are all simulated games, it is easy to arrange for exploring
starts that include all possibilities. In this case one simply picks the dealer’s cards, the
player’s sum, and whether or not the player has a usable ace, all at random with equal
probability. As the initial policy we use the policy evaluated in the previous blackjack
example, that which sticks only on 20 or 21. The initial action-value function can be zero
for all state–action pairs. Figure 5.2 shows the optimal policy for blackjack found by
Monte Carlo ES. This policy is the same as the “basic” strategy of Thorp (1966) with the
sole exception of the leftmost notch in the policy for a usable ace, which is not present
in Thorp’s strategy. We are uncertain of the reason for this discrepancy, but confident
that what is shown here is indeed the optimal policy for the version of blackjack we have
described.
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92 Chapter 5: Monte Carlo Methods

To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from knowledge
of the MDP, here we learn value functions from sample returns with the MDP. The value
functions and corresponding policies still interact to attain optimality in essentially the
same way (GPI). As in the DP chapter, first we consider the prediction problem (the
computation of v⇡ and q⇡ for a fixed arbitrary policy ⇡) then policy improvement, and,
finally, the control problem and its solution by GPI. Each of these ideas taken from DP
is extended to the Monte Carlo case in which only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function for a
given policy. Recall that the value of a state is the expected return—expected cumulative
future discounted reward—starting from that state. An obvious way to estimate it from
experience, then, is simply to average the returns observed after visits to that state. As
more returns are observed, the average should converge to the expected value. This idea
underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v⇡(s), the value of a state s under policy ⇡,
given a set of episodes obtained by following ⇡ and passing through s. Each occurrence
of state s in an episode is called a visit to s. Of course, s may be visited multiple times
in the same episode; let us call the first time it is visited in an episode the first visit
to s. The first-visit MC method estimates v⇡(s) as the average of the returns following
first visits to s, whereas the every-visit MC method averages the returns following all
visits to s. These two Monte Carlo (MC) methods are very similar but have slightly
di↵erent theoretical properties. First-visit MC has been most widely studied, dating back
to the 1940s, and is the one we focus on in this chapter. Every-visit MC extends more
naturally to function approximation and eligibility traces, as discussed in Chapters 9 and
12. First-visit MC is shown in procedural form in the box. Every-visit MC would be the
same except without the check for St having occurred earlier in the episode.

First-visit MC prediction, for estimating V ⇡ v⇡

Input: a policy ⇡ to be evaluated

Initialize:
V (s) 2 R, arbitrarily, for all s 2 S

Returns(s) an empty list, for all s 2 S

Loop forever (for each episode):
Generate an episode following ⇡: S0, A0, R1, S1, A1, R2, . . . , ST�1, AT�1, RT

G 0
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

Unless St appears in S0, S1, . . . , St�1:
Append G to Returns(St)
V (St) average(Returns(St))
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3. O↵-policy Monte Carlo prediction allows us to use sample trajectories to estimate the
value function for a policy that may be di↵erent than the one used to generate the data.
Consider the following MDP, with two states B and C, with 1 action in state B and two
actions in state C, with � = 1.0. Assume the target policy ⇡ has ⇡(A = 1|C) = 0.9
and ⇡(A = 2|C) = 0.1, and that the behaviour policy b has b(A = 1|C) = 0.25 and
b(A = 2|C) = 0.75.

(a) What are the true values v⇡?

(b) Imagine you got to execute ⇡ in the environment for one episode, and observed the episode
trajectory S0 = B,A0 = 1, R1 = 1, S1 = C,A1 = 1, R2 = 1. What is the return for B for
this episode? Additionally, what are the value estimates V⇡, using this one episode with
Monte Carlo updates?

(c) But, you do not actually get to execute ⇡; the agent follows the behaviour policy b. Instead,
you get one episode when following b, and observed the episode trajectory S0 = B,A0 =
1, R1 = 1, S1 = C,A1 = 2, R2 = 10. What is the return for B for this episode? Notice that
this is a return for the behaviour policy, and using it with Monte Carlo updates (without
importance sampling ratios) would give you value estimates for b.

(d) But, we do not actually want to estimate the values for behaviour b, we want to estimates
the values for ⇡. So, we need to use importance sampling ratios for this return. What is the
return for B using this episode, but now with importance sampling ratios? Additionally,
what is the resulting value estimate for V⇡ using this return?

B C T

+1

+10

+1

Answer:

(a)

v⇡(C) = E[Rt+1 + �v⇡(Terminal)|St = C]

= ⇡(A = 1|C) · 1 + ⇡(A = 2|C) · 10
= 0.9 · 1 + 0.1 · 10
= 1.9

v⇡(B) = E[Rt+1 + �v⇡(C)|St = B]

= 1 + v⇡(C)

= 2.9
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