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Monte Carlo version of classical policy iteration
(with construction of greedy policies)
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Here, we use:

Action value estimates
Deterministic policies
Exploring starts

Requiring infinite episodes per iteration




Monte Carlo control with generalized policy iteration
removes the requirement of using infinite episodes

Monte Carlo ES (Exploring Starts), for estimating 7 ~ T,

Initialize:
7(s) € A(s) (arbitrarily), for all s € 8
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)

Returns(s,a) < empty list, for all s € §, a € A(s) evaluation

Loop forever (for each episode): m

Choose Sy € §, Ag € A(Sp) randomly such that all pairs have probability > 0
(Generate an episode from Sg, Ag, following w: So, Ag, R1,...,57_1, Ar_1, Rt @ Q
G — (O 7 ~ greedy(Q)
Loop for each step of episode, t =1—-1,T—-2,...,0: mprovement
GG+ Riyq
Unless the pair S;, A; appears in Sg, Ag, S1, A1...,5:_1, Ai_1:
Append G to Returns(Sy, As)
Q(St, Az) < average(Returns(St, A¢))
m(St) < argmax, Q(S, a)




Monte Carlo control without exploring start

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
m < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € S, a € A(s)
Returns(s,a) < empty list, for all s € 3, a € A(s)

Repeat forever (for each episode): cvaluation

Generate an episode following w: So, Ao, R1,...,57—1,Ar_1, Rt 0 ~ ¢
G 0 /N

Loop for each step of episode, t =T—-1,T-2,...,0: T Q
G <+ G+ Ryqq

Unless the pair Sy, A; appears in Sg, Ag, S1, A1 ...,5_1,Ai_1: g greedy(Q)
Append G to Returns(S;, A) improvement
Q(S;, Ay) < average(Returns(Sg, Az))

A* < argmax, Q(S;, a) (with ties broken arbitrarily)

For all a € A(S;):
[ 1—c+¢/|A(Sy)| ifa= A*
TS e acsy if a # A°




Unbiased and consistent estimation

Say X: ~ p is an iid random variable

Z?_lxi . -
The sample average Z, = ——— Is an estimate of £y _ [X] = 2 xp(x)
n

X

So is X
Then we have Ey 2] = Ex_,[X]; unbiasedness of Z,

And we have P ( lim Z, = EXNp[X]) =1 & Z S Ey. ,[X]; consistency of Z,

n—oo

On the other hand, we have E,_[X;| = Ey_,[X], but not X; = E,_ [X]




When samples are from a different distribution ...

Say X, ~ d is an iid random variable (note the difference in distribution)

Let's call d the data distribution, and p the target distribution

Z?zl Xi

n

The sample average Z = is a *bad* estimate of Ey_ [X] = Z xp(x)

X

Because now we have Ey_ [Z, ] = Ex_,[X] # Ex_,[X]

And Z, 5 Ey_[X] # Ey_ [X]




When samples are from a different distribution ...

Obviously, X; ~ d is a worse estimate of £ [X]

X.
P X, where X ~ d?
d(X;)

How about Y =

If d provides adequate coverage of p : p(x) > 0 implies d(x) > 0,

(X))
Ex. 4|V = Ex~a [Z(X-) Xi:| = Z Zg; xd(x)

X

= ) xp(x) = Ey_,[X]




When samples are from a different distribution, we can
use importance sampling correction

p(X;)
d(X;)

Is known as the importance sampling ratio

It can be used to correct the discrepancy between target and data distributions

The following importance sampling estimator is an unbiased and consistent

estimator of £y _ [X]

" Y, e
Z, = Lic: , Where Y, = PEX) X;and X, ~ d
n d(X;)




Importance sampling for off-policy prediction

We want to estimate v, whereas samples are from a different policy b # »

We call » the behavior policy, and = the target policy

Then the importance sampling ratio for a trajectory corresponding to return G, is

T—1
p N P(Al‘a St—l—l’ AH‘l’ oo, ST‘ St’ AtIT—l ~/ 71') B szl‘ ﬂ(Ak | Sk)p(Sk-l-l ‘Sk’ Ak)
T—1 — — —
| P(Af’ Sf+1’At+1’ T ST‘ Sta At:T—l ~ b) Hlfzrl b(Ak | Sk)P(Sk+1 ‘Ska Ak)
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Hz;tl b(Ai | S¢)




Importance sampling for off-policy prediction

ztefi’ (s) Gf

Sample average estimator for on-policy prediction: V(s) = ()
\)

I (s) contains all time steps in which state s is visited

G, denotes the return after r up through 7(r)

T(r) denotes the first time of termination after ¢

2 75 Pr10-101
|7 (5)|

Importance sampling estimator for off-policy prediction: V(s) =




