
Monte Carlo Methods

Rupam Mahmood

February 10, 2020R L
IA

&

Estimating expectation by sample averaging

vπ(0) ·= Eπ [G0 |S0 = 0] ≈
N

∑
e=1

G0,e

N

Return
of eth

episode

✓ Sample average is an unbiased estimator of expectation 
 
Lemma 1 (Mahmood 2017)

✓ Sample average is a consistent estimator of expectation 
 
Lemma 3 (Mahmood 2017)

https://era.library.ualberta.ca/items/2d964843-06b9-4960-96da-4bedf5c6b37a/view/d5439348-032f-4fab-92f5-d8238bb3853a/Mahmood_Ashique_201709_PhD.pdf
https://era.library.ualberta.ca/items/2d964843-06b9-4960-96da-4bedf5c6b37a/view/d5439348-032f-4fab-92f5-d8238bb3853a/Mahmood_Ashique_201709_PhD.pdf

Unbiased and consistent estimation

Say Xi is an iid random variable

The sample average Zn =
∑n

i= Xi

n
 is an estimate of E[Xi]

Then we have E[Zn] = E[Xi]; unbiasedness of Zn

And we have P (lim
i→∞

Zn = E[Xi]) = 1; consistency of Zn

Monte Carlo prediction

92 Chapter 5: Monte Carlo Methods

To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from knowledge
of the MDP, here we learn value functions from sample returns with the MDP. The value
functions and corresponding policies still interact to attain optimality in essentially the
same way (GPI). As in the DP chapter, first we consider the prediction problem (the
computation of v⇡ and q⇡ for a fixed arbitrary policy ⇡) then policy improvement, and,
finally, the control problem and its solution by GPI. Each of these ideas taken from DP
is extended to the Monte Carlo case in which only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function for a
given policy. Recall that the value of a state is the expected return—expected cumulative
future discounted reward—starting from that state. An obvious way to estimate it from
experience, then, is simply to average the returns observed after visits to that state. As
more returns are observed, the average should converge to the expected value. This idea
underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v⇡(s), the value of a state s under policy ⇡,
given a set of episodes obtained by following ⇡ and passing through s. Each occurrence
of state s in an episode is called a visit to s. Of course, s may be visited multiple times
in the same episode; let us call the first time it is visited in an episode the first visit
to s. The first-visit MC method estimates v⇡(s) as the average of the returns following
first visits to s, whereas the every-visit MC method averages the returns following all
visits to s. These two Monte Carlo (MC) methods are very similar but have slightly
di↵erent theoretical properties. First-visit MC has been most widely studied, dating back
to the 1940s, and is the one we focus on in this chapter. Every-visit MC extends more
naturally to function approximation and eligibility traces, as discussed in Chapters 9 and
12. First-visit MC is shown in procedural form in the box. Every-visit MC would be the
same except without the check for St having occurred earlier in the episode.

First-visit MC prediction, for estimating V ⇡ v⇡

Input: a policy ⇡ to be evaluated

Initialize:
V (s) 2 R, arbitrarily, for all s 2 S

Returns(s) an empty list, for all s 2 S

Loop forever (for each episode):
Generate an episode following ⇡: S0, A0, R1, S1, A1, R2, . . . , ST�1, AT�1, RT

G 0
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

Unless St appears in S0, S1, . . . , St�1:
Append G to Returns(St)
V (St) average(Returns(St))

Friday’s Monte Carlo code: Is it every-visit or first-visit?

Friday’s Monte Carlo code: what’s the difference between
this and MC prediction algorithm from the book?

92 Chapter 5: Monte Carlo Methods

To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from knowledge
of the MDP, here we learn value functions from sample returns with the MDP. The value
functions and corresponding policies still interact to attain optimality in essentially the
same way (GPI). As in the DP chapter, first we consider the prediction problem (the
computation of v⇡ and q⇡ for a fixed arbitrary policy ⇡) then policy improvement, and,
finally, the control problem and its solution by GPI. Each of these ideas taken from DP
is extended to the Monte Carlo case in which only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function for a
given policy. Recall that the value of a state is the expected return—expected cumulative
future discounted reward—starting from that state. An obvious way to estimate it from
experience, then, is simply to average the returns observed after visits to that state. As
more returns are observed, the average should converge to the expected value. This idea
underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v⇡(s), the value of a state s under policy ⇡,
given a set of episodes obtained by following ⇡ and passing through s. Each occurrence
of state s in an episode is called a visit to s. Of course, s may be visited multiple times
in the same episode; let us call the first time it is visited in an episode the first visit
to s. The first-visit MC method estimates v⇡(s) as the average of the returns following
first visits to s, whereas the every-visit MC method averages the returns following all
visits to s. These two Monte Carlo (MC) methods are very similar but have slightly
di↵erent theoretical properties. First-visit MC has been most widely studied, dating back
to the 1940s, and is the one we focus on in this chapter. Every-visit MC extends more
naturally to function approximation and eligibility traces, as discussed in Chapters 9 and
12. First-visit MC is shown in procedural form in the box. Every-visit MC would be the
same except without the check for St having occurred earlier in the episode.

First-visit MC prediction, for estimating V ⇡ v⇡

Input: a policy ⇡ to be evaluated

Initialize:
V (s) 2 R, arbitrarily, for all s 2 S

Returns(s) an empty list, for all s 2 S

Loop forever (for each episode):
Generate an episode following ⇡: S0, A0, R1, S1, A1, R2, . . . , ST�1, AT�1, RT

G 0
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

Unless St appears in S0, S1, . . . , St�1:
Append G to Returns(St)
V (St) average(Returns(St))

Monte Carlo version of classical policy iteration  
(with construction of greedy policies)

5.3. Monte Carlo Control 97

to consider only policies that are stochastic with a nonzero probability of selecting all
actions in each state. We discuss two important variants of this approach in later sections.
For now, we retain the assumption of exploring starts and complete the presentation of a
full Monte Carlo control method.

Exercise 5.3 What is the backup diagram for Monte Carlo estimation of q⇡? ⇤

5.3 Monte Carlo Control

We are now ready to consider how Monte Carlo estimation can be used in control, that
is, to approximate optimal policies. The overall idea is to proceed according to the same
pattern as in the DP chapter, that is, according to the idea of generalized policy iteration

evaluation

improvement

⇡ Q
⇡ � greedy(Q)

Q � q⇡

(GPI). In GPI one maintains both an approximate policy and
an approximate value function. The value function is repeatedly
altered to more closely approximate the value function for the
current policy, and the policy is repeatedly improved with respect
to the current value function, as suggested by the diagram to
the right. These two kinds of changes work against each other to
some extent, as each creates a moving target for the other, but
together they cause both policy and value function to approach
optimality.

To begin, let us consider a Monte Carlo version of classical policy iteration. In
this method, we perform alternating complete steps of policy evaluation and policy
improvement, beginning with an arbitrary policy ⇡0 and ending with the optimal policy
and optimal action-value function:

⇡0

E�! q⇡0

I�! ⇡1

E�! q⇡1

I�! ⇡2

E�! · · · I�! ⇡⇤
E�! q⇤,

where
E�! denotes a complete policy evaluation and

I�! denotes a complete policy
improvement. Policy evaluation is done exactly as described in the preceding section.
Many episodes are experienced, with the approximate action-value function approaching
the true function asymptotically. For the moment, let us assume that we do indeed
observe an infinite number of episodes and that, in addition, the episodes are generated
with exploring starts. Under these assumptions, the Monte Carlo methods will compute
each q⇡k

exactly, for arbitrary ⇡k.
Policy improvement is done by making the policy greedy with respect to the current

value function. In this case we have an action-value function, and therefore no model is
needed to construct the greedy policy. For any action-value function q, the corresponding
greedy policy is the one that, for each s 2 S, deterministically chooses an action with
maximal action-value:

⇡(s)
.
= arg max

a

q(s, a). (5.1)

Policy improvement then can be done by constructing each ⇡k+1 as the greedy policy
with respect to q⇡k

. The policy improvement theorem (Section 4.2) then applies to ⇡k

Could we use state value estimates?

Why is exploring starts necessary?

Why is exploring starts impractical?

What is the other impractical assumption here?

Monte Carlo control with generalized policy iteration

5.3. Monte Carlo Control 99

Monte Carlo ES (Exploring Starts), for estimating ⇡ ⇡ ⇡⇤

Initialize:
⇡(s) 2 A(s) (arbitrarily), for all s 2 S

Q(s, a) 2 R (arbitrarily), for all s 2 S, a 2 A(s)
Returns(s, a) empty list, for all s 2 S, a 2 A(s)

Loop forever (for each episode):
Choose S0 2 S, A0 2 A(S0) randomly such that all pairs have probability > 0
Generate an episode from S0, A0, following ⇡: S0, A0, R1, . . . , ST�1, AT�1, RT

G 0
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

Unless the pair St, At appears in S0, A0, S1, A1 . . . , St�1, At�1:
Append G to Returns(St, At)
Q(St, At) average(Returns(St, At))
⇡(St) argmax

a
Q(St, a)

Exercise 5.4 The pseudocode for Monte Carlo ES is ine�cient because, for each state–
action pair, it maintains a list of all returns and repeatedly calculates their mean. It would
be more e�cient to use techniques similar to those explained in Section 2.4 to maintain
just the mean and a count (for each state–action pair) and update them incrementally.
Describe how the pseudocode would be altered to achieve this. ⇤

In Monte Carlo ES, all the returns for each state–action pair are accumulated and
averaged, irrespective of what policy was in force when they were observed. It is easy
to see that Monte Carlo ES cannot converge to any suboptimal policy. If it did, then
the value function would eventually converge to the value function for that policy, and
that in turn would cause the policy to change. Stability is achieved only when both
the policy and the value function are optimal. Convergence to this optimal fixed point
seems inevitable as the changes to the action-value function decrease over time, but has
not yet been formally proved. In our opinion, this is one of the most fundamental open
theoretical questions in reinforcement learning (for a partial solution, see Tsitsiklis, 2002).

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo ES to
blackjack. Because the episodes are all simulated games, it is easy to arrange for exploring
starts that include all possibilities. In this case one simply picks the dealer’s cards, the
player’s sum, and whether or not the player has a usable ace, all at random with equal
probability. As the initial policy we use the policy evaluated in the previous blackjack
example, that which sticks only on 20 or 21. The initial action-value function can be zero
for all state–action pairs. Figure 5.2 shows the optimal policy for blackjack found by
Monte Carlo ES. This policy is the same as the “basic” strategy of Thorp (1966) with the
sole exception of the leftmost notch in the policy for a usable ace, which is not present
in Thorp’s strategy. We are uncertain of the reason for this discrepancy, but confident
that what is shown here is indeed the optimal policy for the version of blackjack we have
described.

5.3. Monte Carlo Control 97

to consider only policies that are stochastic with a nonzero probability of selecting all
actions in each state. We discuss two important variants of this approach in later sections.
For now, we retain the assumption of exploring starts and complete the presentation of a
full Monte Carlo control method.

Exercise 5.3 What is the backup diagram for Monte Carlo estimation of q⇡? ⇤

5.3 Monte Carlo Control

We are now ready to consider how Monte Carlo estimation can be used in control, that
is, to approximate optimal policies. The overall idea is to proceed according to the same
pattern as in the DP chapter, that is, according to the idea of generalized policy iteration

evaluation

improvement

⇡ Q
⇡ � greedy(Q)

Q � q⇡

(GPI). In GPI one maintains both an approximate policy and
an approximate value function. The value function is repeatedly
altered to more closely approximate the value function for the
current policy, and the policy is repeatedly improved with respect
to the current value function, as suggested by the diagram to
the right. These two kinds of changes work against each other to
some extent, as each creates a moving target for the other, but
together they cause both policy and value function to approach
optimality.

To begin, let us consider a Monte Carlo version of classical policy iteration. In
this method, we perform alternating complete steps of policy evaluation and policy
improvement, beginning with an arbitrary policy ⇡0 and ending with the optimal policy
and optimal action-value function:

⇡0

E�! q⇡0

I�! ⇡1

E�! q⇡1

I�! ⇡2

E�! · · · I�! ⇡⇤
E�! q⇤,

where
E�! denotes a complete policy evaluation and

I�! denotes a complete policy
improvement. Policy evaluation is done exactly as described in the preceding section.
Many episodes are experienced, with the approximate action-value function approaching
the true function asymptotically. For the moment, let us assume that we do indeed
observe an infinite number of episodes and that, in addition, the episodes are generated
with exploring starts. Under these assumptions, the Monte Carlo methods will compute
each q⇡k

exactly, for arbitrary ⇡k.
Policy improvement is done by making the policy greedy with respect to the current

value function. In this case we have an action-value function, and therefore no model is
needed to construct the greedy policy. For any action-value function q, the corresponding
greedy policy is the one that, for each s 2 S, deterministically chooses an action with
maximal action-value:

⇡(s)
.
= arg max

a

q(s, a). (5.1)

Policy improvement then can be done by constructing each ⇡k+1 as the greedy policy
with respect to q⇡k

. The policy improvement theorem (Section 4.2) then applies to ⇡k

Monte Carlo control without exploring start
5.3. Monte Carlo Control 97

to consider only policies that are stochastic with a nonzero probability of selecting all
actions in each state. We discuss two important variants of this approach in later sections.
For now, we retain the assumption of exploring starts and complete the presentation of a
full Monte Carlo control method.

Exercise 5.3 What is the backup diagram for Monte Carlo estimation of q⇡? ⇤

5.3 Monte Carlo Control

We are now ready to consider how Monte Carlo estimation can be used in control, that
is, to approximate optimal policies. The overall idea is to proceed according to the same
pattern as in the DP chapter, that is, according to the idea of generalized policy iteration

evaluation

improvement

⇡ Q
⇡ � greedy(Q)

Q � q⇡

(GPI). In GPI one maintains both an approximate policy and
an approximate value function. The value function is repeatedly
altered to more closely approximate the value function for the
current policy, and the policy is repeatedly improved with respect
to the current value function, as suggested by the diagram to
the right. These two kinds of changes work against each other to
some extent, as each creates a moving target for the other, but
together they cause both policy and value function to approach
optimality.

To begin, let us consider a Monte Carlo version of classical policy iteration. In
this method, we perform alternating complete steps of policy evaluation and policy
improvement, beginning with an arbitrary policy ⇡0 and ending with the optimal policy
and optimal action-value function:

⇡0

E�! q⇡0

I�! ⇡1

E�! q⇡1

I�! ⇡2

E�! · · · I�! ⇡⇤
E�! q⇤,

where
E�! denotes a complete policy evaluation and

I�! denotes a complete policy
improvement. Policy evaluation is done exactly as described in the preceding section.
Many episodes are experienced, with the approximate action-value function approaching
the true function asymptotically. For the moment, let us assume that we do indeed
observe an infinite number of episodes and that, in addition, the episodes are generated
with exploring starts. Under these assumptions, the Monte Carlo methods will compute
each q⇡k

exactly, for arbitrary ⇡k.
Policy improvement is done by making the policy greedy with respect to the current

value function. In this case we have an action-value function, and therefore no model is
needed to construct the greedy policy. For any action-value function q, the corresponding
greedy policy is the one that, for each s 2 S, deterministically chooses an action with
maximal action-value:

⇡(s)
.
= arg max

a

q(s, a). (5.1)

Policy improvement then can be done by constructing each ⇡k+1 as the greedy policy
with respect to q⇡k

. The policy improvement theorem (Section 4.2) then applies to ⇡k

5.4. Monte Carlo Control without Exploring Starts 101

that are closest to greedy.
The overall idea of on-policy Monte Carlo control is still that of GPI. As in Monte

Carlo ES, we use first-visit MC methods to estimate the action-value function for the
current policy. Without the assumption of exploring starts, however, we cannot simply
improve the policy by making it greedy with respect to the current value function, because
that would prevent further exploration of nongreedy actions. Fortunately, GPI does not
require that the policy be taken all the way to a greedy policy, only that it be moved
toward a greedy policy. In our on-policy method we will move it only to an "-greedy
policy. For any "-soft policy, ⇡, any "-greedy policy with respect to q⇡ is guaranteed to
be better than or equal to ⇡. The complete algorithm is given in the box below.

On-policy first-visit MC control (for "-soft policies), estimates ⇡ ⇡ ⇡⇤

Algorithm parameter: small " > 0

Initialize:
⇡ an arbitrary "-soft policy
Q(s, a) 2 R (arbitrarily), for all s 2 S, a 2 A(s)
Returns(s, a) empty list, for all s 2 S, a 2 A(s)

Repeat forever (for each episode):
Generate an episode following ⇡: S0, A0, R1, . . . , ST�1, AT�1, RT

G 0
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

Unless the pair St, At appears in S0, A0, S1, A1 . . . , St�1, At�1:
Append G to Returns(St, At)
Q(St, At) average(Returns(St, At))
A⇤ argmax

a
Q(St, a) (with ties broken arbitrarily)

For all a 2 A(St):

⇡(a|St)
⇢

1� " + "/|A(St)| if a = A⇤

"/|A(St)| if a 6= A⇤

That any "-greedy policy with respect to q⇡ is an improvement over any "-soft policy
⇡ is assured by the policy improvement theorem. Let ⇡0 be the "-greedy policy. The
conditions of the policy improvement theorem apply because for any s 2 S:

q⇡(s, ⇡0(s)) =
X

a

⇡0(a|s)q⇡(s, a)

=
"

|A(s)|
X

a

q⇡(s, a) + (1� ") max
a

q⇡(s, a) (5.2)

� "

|A(s)|
X

a

q⇡(s, a) + (1� ")
X

a

⇡(a|s)� "

|A(s)|

1� "
q⇡(s, a)

(the sum is a weighted average with nonnegative weights summing to 1, and as such it

