CIFAR amil

Monte Carlo Methods

Rupam Mahmood

February 10, 2020

UNIVERSITY OF

57 ALBERTA

Estimating expectation by sample averaging

Al GO e QE?:::ZZ‘Z
v 0) = E, [Gy|Sy=0]) v

e=]

v~ Sample average is an unbiased estimator of expectation
Lemma 1 (Mahmood 2017)
v Sample average is a consistent estimator of expectation

Lemma 3 (Mahmood 2017)

https://era.library.ualberta.ca/items/2d964843-06b9-4960-96da-4bedf5c6b37a/view/d5439348-032f-4fab-92f5-d8238bb3853a/Mahmood_Ashique_201709_PhD.pdf
https://era.library.ualberta.ca/items/2d964843-06b9-4960-96da-4bedf5c6b37a/view/d5439348-032f-4fab-92f5-d8238bb3853a/Mahmood_Ashique_201709_PhD.pdf

Unbiased and consistent estimation

Say X is an iid random variable

2. X
The sample average Z, = ——— is an estimate of E[X]
n

Then we have E[Z | = E[X/]; unbiasedness of Z,

And we have P (limZ, = E[X,]) = 1; consistency of Z,

[— 00

Monte Carlo prediction

First-visit MC prediction, for estimating V = v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € 8

Loop forever (for each episode):
Generate an episode following m: Sp, Ao, R1, 51, A1, Ra, ..., S7-1,Ar_1, Rt
G+ 0
Loop for each step of episode, t =T1T—1,1T"—2,...,0:
G+ vG + R
Unless S appears in Sg, S1,...,S5t_1:
Append G to Returns(St)
V (St) + average(Returns(St))

Friday’s Monte Carlo code: Is it every-visit or first-visit?

1 import numpy as np
2
3 neps = 1000; ns = 1; g = 0.9; probl = 0.1
4
5 pol = np.zeros((ns, 2)); pol[0, 0] = probl; pol[0, 1] = 1 - probl
6
7 rewards = np.zeros((ns, 2)); rewards[0, 0] = -1; rewards[0, 1] = +1
8
9 rets = []
10 for ep in range(neps):

11 s = 0; ret = 0; £t =0

12 while s != 1:

13 rnd = np.random.random()
14 if rnd < pol[s, 0]: a = 0
15 else: a =1

16

17 Ssp = s + a

18 r = rewards[s, a]

19 ret += r *(g**t)

20 s =sp; t =t +1

21 rets.append(ret)

22 print("Average return:", np.mean(rets))

Friday’'s Monte Carlo code: what's the difference between
this and MC prediction algorithm from the book?

1 import numpy as np
2
3 neps = 1000; ns = 1; g = 0.9; probl = 0.1
First-visit MC prediction, for estimating V =~ v, 4
5 pol = np.zeros((ns, 2)); pol[0, 0] = probl; pol[0, 1] = 1 - probl
Input: a policy m to be evaluated 6
Initialize: 7 rewards = np.zeros((ns, 2)); rewards[0, 0] = -1; rewards[0, 1] = +1
V(s) € R, arbitrarily, for all s € 8 8
Returns(s) < an empty list, for all s € 8 9 rets = []
Loop forever (for each episode): 10 for ep in range(neps):

Generate an episode following 7: So, Ao, R1, 51, A1, Re,...,S7-1,Ar_1, Rr 11 s =0; ret = 0; t =0

G — 0 12 while s != 1:

Loop for each step of episode, t =T —-1,T—2,...,0: 13 rnd = np.random.random()
G+ vG + R4 14 if rnd < pol[s, 0]: a = 0
Unless S; appears in So, S1,...,St—1: 15 else: a = 1

Append G to Returns(St) 16

V(St) + average(Returns(St)) 17 sp=s + a
18 r = rewards|[s, a]
19 ret += r *(g**t)
20 s =sp; t=t +1
21 rets.append(ret)

22 print("Average return:", np.mean(rets))

Monte Carlo version of classical policy iteration
(with construction of greedy policies)

Woiqﬁo éﬂ'l iqﬁl éﬂ'g i éﬂ'* iq*
Could we use state value estimates?
Why is exploring starts necessary?
Why is exploring starts impractical?

What is the other impractical assumption here?

Monte Carlo control with generalized policy iteration

Monte Carlo ES (Exploring Starts), for estimating 7 ~ 7,

Initialize:
m(s) € A(s) (arbitrarily), for all s € 8
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)

Returns(s,a) < empty list, for all s € §, a € A(s) evaluation

Loop forever (for each episode): m

Choose Sy € §, Ag € A(Sp) randomly such that all pairs have probability > 0
(Generate an episode from Sg, Ag, following w: So, Ag, R1,...,57_1, Ar_1, Rt @ Q
G — (O 7 ~ greedy(Q)
Loop for each step of episode, t =1—1,T—-2,...,0: mprovement
GG+ Riyq
Unless the pair S;, A; appears in Sg, Ag, S1, A1...,5:_1, Ai_1:
Append G to Returns(Sy, As)
Q(St, Ay) < average(Returns(St, A¢))
m(St) < argmax, Q(S, a)

Monte Carlo control without exploring start

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
m < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) < empty list, for all s € 3, a € A(s)

Repeat forever (for each episode): cvaluation

Generate an episode following w: So, Ao, R1,...,57—1,Ar_1, Rt 0 ~ ¢
G 0 /N

Loop for each step of episode, t =T—-1,T-2,...,0: T Q
G <+ G+ Ryqa

Unless the pair Sy, A; appears in Sg, Ag, S1, A1 ...,5_1,Ai_1: g greedy(Q)
Append G to Returns(S;, Ay) improvement
Q(S;, Ay) < average(Returns(Sy, Az))

A* < argmax, Q(S;, a) (with ties broken arbitrarily)

For all a € A(S;):
[1—c+¢/|A(Sy)| ifa= A*
TS e acsy if a # A°

