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1. In iterative policy evaluation, we seek to find the value function for a policy ⇡ by applying
the Bellman equation many times to generate a sequence of value functions vk that will
eventually converge to the true value function v⇡. How can we modify the update below to
generate a sequence of action value functions qk?

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a) [r + �vk(s
0)]

Answer:

qk+1(s, a) =
X

s0,r

p(s0, r|s, a)
"
r + �

X

a0

⇡(a0|s0)qk(s0, a0)
#

2. A deterministic policy ⇡(s) outputs an action a 2 A = {a1, a2, . . . , ak} directly. More gener-
ally, a policy ⇡(·|s) outputs the probabilities for all actions: ⇡(·|s) = [⇡(a1|s), ⇡(a2|s), . . . , ⇡(ak|s).
How can you write a deterministic policy in this form? Let ⇡(s) = ai and define ⇡(·|s).
Answer:

⇡(·|s)[k] = 1if k = ⇡(s)and 0 otherwise

3. (Exercise 4.1 S&B) Consider the 4x4 gridworld below, where actions that would take the
agent o↵ the grid leave the state unchanged. The task is episodic with � = 1 and the
terminal states are the shaded blocks. Using the precomputed values for the equiprobable
policy below, what is q⇡(11, down)? What is q⇡(7, down)?
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Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.
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5. (Exercise 4.4 S&B) The policy iteration algorithm on page 80 has a subtle bug in that it
may never terminate if the policy continually switches between two or more policies that
are equally good. This is ok for pedagogy, but not for actual use. Modify the pseudocode
so that convergence is guaranteed. Note that there is more than one approach to solve this
problem.

80 Chapter 4: Dynamic Programming

s 2 S, illustrating policy improvement. Although in this case the new policy �� happens
to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, �, has been improved using v� to yield a better policy, ��, we can then
compute v�� and improve it again to yield an even better ���. We can thus obtain a
sequence of monotonically improving policies and value functions:

�0
E�� v�0

I�� �1
E�� v�1

I�� �2
E�� · · · I�� ��

E�� v�,

where
E�� denotes a policy evaluation and

I�� denotes a policy improvement . Each
policy is guaranteed to be a strict improvement over the previous one (unless it is already
optimal). Because a finite MDP has only a finite number of policies, this process must
converge to an optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in the box below. Note that each policy evaluation, itself an iterative computation,
is started with the value function for the previous policy. This typically results in a great
increase in the speed of convergence of policy evaluation (presumably because the value
function changes little from one policy to the next).

Policy Iteration (using iterative policy evaluation) for estimating � � ��

1. Initialization
V (s) 2 R and �(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Loop:

� � 0
Loop for each s 2 S:

v � V (s)
V (s) �

�
s�,r p(s�, r |s, �(s))

�
r + �V (s�)

�

� � max(�, |v � V (s)|)
until � < � (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable � true
For each s 2 S:

old-action � �(s)
�(s) � argmaxa

�
s�,r p(s�, r |s, a)

�
r + �V (s�)

�

If old-action �= �(s), then policy-stable � false
If policy-stable, then stop and return V � v� and � � ��; else go to 2
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Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.
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q⇡(11, down) = �1 + 0.0 = �1

q⇡(7, down) = �1 + v⇡(11) = �15

4. (Exercise 4.1 from S&B) Suppose in the above gridworld where a new state 15 is added
to the gridworld just below state 13, and its actions, left, up, right, and dowm, take the
agent to the states 12, 13, 14, and 15, respectively. Assume that the transitions from the
original states are unchanged. What, then is, v⇡(15) for the equiprobable random policy?
Now suppose the dynamics of state 13 are also changed, such that action down from state
13 takes the agent to the new state 15. What is v⇡(15) for the equiprobable random policy
in this case?

Answer:
v⇡(s) =

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a) [r + �vk(s
0)]

Case 1:

v⇡(15) =
1

4
(�1 � 22 + �1 � 20 + �1 � 14 + �1 + v⇡(15)) ! v⇡(15) = �20

Case 2:

v⇡(15) =
1

4
(�1 � 22 + �1 + v⇡(13) + �1 � 14 + �1 + v⇡(15)) ! 3v⇡(15) � v⇡(13) = �40

v⇡(13) =
1

4
(�1 � 22 + �1 � 20 + �1 � 14 + �1 + v⇡(15)) ! 4v⇡(13) � v⇡(15) = �60

3v⇡(15) � v⇡(13) = �40

12v⇡(13) � 3v⇡(15) = �180

v⇡(13) = v⇡(15) = �20

5. (Challenge Question) A gambler has the opportunity to make bets on the outcomes of
a sequence of coin flips. If the coin comes up heads, she wins as many dollars as she has
staked on that flip; if it is tails, she loses her stake. The game ends when the gambler
wins by reaching her goal of $100, or loses by running out of money. On each flip, the
gambler must decide what portion of her capital to stake, in integer numbers of dollars.
This problem can be formulated as an undiscounted, episodic, finite MDP. The state is the
gambler’s capital, s 2 {1, 2, ..., 99} and the actions are stakes, a 2 {0, 1, ...,min(s, 100�s)}.
The reward is +1 when reaching the goal of $100 and zero on all other transitions. The
probability of seeing heads is ph = 0.4.

2

Worksheet 5
CMPUT 397

February 3, 2020

1. In iterative policy evaluation, we seek to find the value function for a policy ⇡ by applying
the Bellman equation many times to generate a sequence of value functions vk that will
eventually converge to the true value function v⇡. How can we modify the update below to
generate a sequence of action value functions qk?

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a) [r + �vk(s
0)]

Answer:

qk+1(s, a) =
X

s0,r

p(s0, r|s, a)
"
r + �

X

a0

⇡(a0|s0)qk(s0, a0)
#

2. A deterministic policy ⇡(s) outputs an action a 2 A = {a1, a2, . . . , ak} directly. More gener-
ally, a policy ⇡(·|s) outputs the probabilities for all actions: ⇡(·|s) = [⇡(a1|s), ⇡(a2|s), . . . , ⇡(ak|s).
How can you write a deterministic policy in this form? Let ⇡(s) = ai and define ⇡(·|s).
Answer:

⇡(·|s)[k] = 1if k = ⇡(s)and 0 otherwise

3. (Exercise 4.1 S&B) Consider the 4x4 gridworld below, where actions that would take the
agent o↵ the grid leave the state unchanged. The task is episodic with � = 1 and the
terminal states are the shaded blocks. Using the precomputed values for the equiprobable
policy below, what is q⇡(11, down)? What is q⇡(7, down)?

4.2. Policy Improvement 77

 0.0  0.0  0.0

 0.0  0.0  0.0  0.0

 0.0  0.0  0.0  0.0

 0.0  0.0  0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk  for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal 
policy

random 
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
      for the

random policy
vk greedy policy

    w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

Answer:

q⇡(s, a) =
X

s0,r

p(s0, r|s, a) [r + �vk(s
0)]

1



Demo of an MDP in action

21 30 4

+1000


