CIFAR amil

Dynamic Programming

Rupam Mahmood

February 3, 2020

UNIVERSITY OF

57 ALBERTA

Who knows what?

Learning and other
iImprovement mechanisms

Estimates like Vor Q

m(als)

SOaA())RlvS17A17R27S27A27R37"' Agent

state reward action
\Y R, A,

Environment

p(s',r|s,a) = Pr{S;=s",Ry=r|S;_1=s,A;_1=a}

r(s,a) vx(s) qx(s,a) m,

Dynamic programming

v Dynamic programming (DP) is a way of knowing values and optimal policies
when the model of the environment’s dynamics is given

v If in a problem the model is given to the agent, it can use DP

v Often the agent is only given an estimate of the model if at all or ...

v The agent estimates the model through experience (model learning)

v Or a designer tests their agent by comparing agent’s performance against true
values / optimal policies in a toy MDP

v Generally, mechanisms that use a given model as opposed to experience to
Improve performance are known as planning methods

Two key ideas underlying DP methods:

(1) Fixed-point iteration
Bellman equation

vl(s) =) m(als)) pls',rls, @)lr+yv(s)]

Vi 1(8) = 2 n(als) Zp(s’, r|s,a)lr +yv(s)]

Bellman update

Fixed-point equation

x = f(x)

v

X1 = J)
Fixed-point iteration

Converges under some conditions

Iterative policy evaluation

Iterative Policy Evaluation, for estimating V =~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V'(s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A<+ 0
Loop for each s € o:
v <+ V(s)
V(s) 5, mlals) Yo, p(s's 7|5, 0) [r + AV ()]
A +— max(A, |lv — V(s)|)
until A < 6

Two key ideas underlying DP methods:
(2) Policy improvement

If for a policy =’ we have ¢ (s, 7'(s)) > v_(s)Vs, then we also have v_(s) > v_(s), Vs

A greedy policy w.r.t. g, is such a policy

max q,(s,a) > v (s)Vs
a

Policy iteration

E I E I E I E
Mo — Upy —> M —> Ug, —> g —> + =+ —> My — Uy

Policy Iteration (using iterative policy evaluation) for estimating 7 =~ 7,

. Initialization
V(s) € R and n(s) € A(s) arbitrarily for all s € S

. Policy Evaluation
Loop:
A+ 0
Loop for each s € &:
v+ V(s)
V(s) < >0 . p(s'sr|s,m(s)) [r + 4V ()]

A + max(A, v — V(s)])

until A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement
policy-stable < true
For each s € o:
old-action < 7(s)
m(s) < argmax, » . . p(s’,r|s,a) 4V (s")]
If old-action # w(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and 7 =~ m,; else go to 2

Value iteration

Value Iteration, for estimating m ~ .,

Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 81, arbitrarily except that V (terminal) = 0

Loop:

A+ 0

Loop for each s € o:
v+ V(s)
V(s) < max,) ., p(s',r|s,a) r+ V(s
A + max(A, v —V(s)])

until A < 6

Output a deterministic policy, m = 7., such that
7(s) = argmax,, ZS,’T p(s’,r|s,a) [7‘ + WV(S/)]

Ve = mMax 2 p(s,r|s,a)r+ yv«(s)]
a

s'.r

Vepr =max Y p(s’, 7| s, @)lr + yv(s)]
a

s’ r

