
Dynamic Programming

Rupam Mahmood

February 3, 2020R L
IA

&

Who knows what?48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives some representation
of the environment’s state, St 2 S, and on that basis selects an action, At 2 A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s0 2 S and r 2 R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S ⇥ R ⇥ S ⇥ A ! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives some representation
of the environment’s state, St 2 S, and on that basis selects an action, At 2 A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s0 2 S and r 2 R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S ⇥ R ⇥ S ⇥ A ! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

Learning and other
improvement mechanisms

48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives some representation
of the environment’s state, St 2 S, and on that basis selects an action, At 2 A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s0 2 S and r 2 R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S ⇥ R ⇥ S ⇥ A ! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

Estimates like V or Q

58 Chapter 3: Finite Markov Decision Processes

3.5 Policies and Value Functions

Almost all reinforcement learning algorithms involve estimating value functions—functions
of states (or of state–action pairs) that estimate how good it is for the agent to be in a
given state (or how good it is to perform a given action in a given state). The notion
of “how good” here is defined in terms of future rewards that can be expected, or, to
be precise, in terms of expected return. Of course the rewards the agent can expect to
receive in the future depend on what actions it will take. Accordingly, value functions
are defined with respect to particular ways of acting, called policies.

Formally, a policy is a mapping from states to probabilities of selecting each possible
action. If the agent is following policy ⇡ at time t, then ⇡(a|s) is the probability that
At = a if St = s. Like p, ⇡ is an ordinary function; the “|” in the middle of ⇡(a|s)
merely reminds that it defines a probability distribution over a 2 A(s) for each s 2 S.
Reinforcement learning methods specify how the agent’s policy is changed as a result of
its experience.

Exercise 3.11 If the current state is St, and actions are selected according to stochastic
policy ⇡, then what is the expectation of Rt+1 in terms of ⇡ and the four-argument
function p (3.2)? ⇤

The value function of a state s under a policy ⇡, denoted v⇡(s), is the expected return
when starting in s and following ⇡ thereafter. For MDPs, we can define v⇡ formally by

v⇡(s)
.
= E⇡[Gt | St =s] = E⇡

" 1X

k=0

�kRt+k+1

����� St =s

#
, for all s 2 S, (3.12)

where E⇡[·] denotes the expected value of a random variable given that the agent follows
policy ⇡, and t is any time step. Note that the value of the terminal state, if any, is
always zero. We call the function v⇡ the state-value function for policy ⇡.

Similarly, we define the value of taking action a in state s under a policy ⇡, denoted
q⇡(s, a), as the expected return starting from s, taking the action a, and thereafter
following policy ⇡:

q⇡(s, a)
.
= E⇡[Gt | St =s, At = a] = E⇡

" 1X

k=0

�kRt+k+1

����� St =s, At =a

#
. (3.13)

We call q⇡ the action-value function for policy ⇡.

Exercise 3.12 Give an equation for v⇡ in terms of q⇡ and ⇡. ⇤
Exercise 3.13 Give an equation for q⇡ in terms of v⇡ and the four-argument p. ⇤

The value functions v⇡ and q⇡ can be estimated from experience. For example, if an
agent follows policy ⇡ and maintains an average, for each state encountered, of the actual
returns that have followed that state, then the average will converge to the state’s value,
v⇡(s), as the number of times that state is encountered approaches infinity. If separate
averages are kept for each action taken in each state, then these averages will similarly
converge to the action values, q⇡(s, a). We call estimation methods of this kind Monte
Carlo methods because they involve averaging over many random samples of actual returns.

3.1. The Agent–Environment Interface 49

but here it just reminds us that p specifies a probability distribution for each choice of s
and a, that is, that

X

s02S

X

r2R

p(s0, r |s, a) = 1, for all s 2 S, a 2 A(s). (3.3)

In a Markov decision process, the probabilities given by p completely characterize the
environment’s dynamics. That is, the probability of each possible value for St and Rt

depends only on the immediately preceding state and action, St�1 and At�1, and, given
them, not at all on earlier states and actions. This is best viewed a restriction not on the
decision process, but on the state. The state must include information about all aspects
of the past agent–environment interaction that make a di↵erence for the future. If it
does, then the state is said to have the Markov property. We will assume the Markov
property throughout this book, though starting in Part II we will consider approximation
methods that do not rely on it, and in Chapter 17 we consider how a Markov state can
be learned and constructed from non-Markov observations.

From the four-argument dynamics function, p, one can compute anything else one might
want to know about the environment, such as the state-transition probabilities (which we
denote, with a slight abuse of notation, as a three-argument function p : S⇥S⇥A ! [0, 1]),

p(s0 |s, a)
.
= Pr{St =s0 | St�1 =s, At�1 =a} =

X

r2R

p(s0, r |s, a). (3.4)

We can also compute the expected rewards for state–action pairs as a two-argument
function r : S ⇥ A ! R:

r(s, a)
.
= E[Rt | St�1 =s, At�1 =a] =

X

r2R

r
X

s02S

p(s0, r |s, a), (3.5)

and the expected rewards for state–action–next-state triples as a three-argument function
r : S ⇥ A ⇥ S ! R,

r(s, a, s0)
.
= E[Rt | St�1 =s, At�1 =a, St = s0] =

X

r2R

r
p(s0, r |s, a)

p(s0 |s, a)
. (3.6)

In this book, we usually use the four-argument p function (3.2), but each of these other
notations are also occasionally convenient.

The MDP framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer to fixed
intervals of real time; they can refer to arbitrary successive stages of decision making
and acting. The actions can be low-level controls, such as the voltages applied to the
motors of a robot arm, or high-level decisions, such as whether or not to have lunch or
to go to graduate school. Similarly, the states can take a wide variety of forms. They
can be completely determined by low-level sensations, such as direct sensor readings, or
they can be more high-level and abstract, such as symbolic descriptions of objects in a
room. Some of what makes up a state could be based on memory of past sensations or

58 Chapter 3: Finite Markov Decision Processes

3.5 Policies and Value Functions

Almost all reinforcement learning algorithms involve estimating value functions—functions
of states (or of state–action pairs) that estimate how good it is for the agent to be in a
given state (or how good it is to perform a given action in a given state). The notion
of “how good” here is defined in terms of future rewards that can be expected, or, to
be precise, in terms of expected return. Of course the rewards the agent can expect to
receive in the future depend on what actions it will take. Accordingly, value functions
are defined with respect to particular ways of acting, called policies.

Formally, a policy is a mapping from states to probabilities of selecting each possible
action. If the agent is following policy ⇡ at time t, then ⇡(a|s) is the probability that
At = a if St = s. Like p, ⇡ is an ordinary function; the “|” in the middle of ⇡(a|s)
merely reminds that it defines a probability distribution over a 2 A(s) for each s 2 S.
Reinforcement learning methods specify how the agent’s policy is changed as a result of
its experience.

Exercise 3.11 If the current state is St, and actions are selected according to stochastic
policy ⇡, then what is the expectation of Rt+1 in terms of ⇡ and the four-argument
function p (3.2)? ⇤

The value function of a state s under a policy ⇡, denoted v⇡(s), is the expected return
when starting in s and following ⇡ thereafter. For MDPs, we can define v⇡ formally by

v⇡(s)
.
= E⇡[Gt | St =s] = E⇡

" 1X

k=0

�kRt+k+1

����� St =s

#
, for all s 2 S, (3.12)

where E⇡[·] denotes the expected value of a random variable given that the agent follows
policy ⇡, and t is any time step. Note that the value of the terminal state, if any, is
always zero. We call the function v⇡ the state-value function for policy ⇡.

Similarly, we define the value of taking action a in state s under a policy ⇡, denoted
q⇡(s, a), as the expected return starting from s, taking the action a, and thereafter
following policy ⇡:

q⇡(s, a)
.
= E⇡[Gt | St =s, At = a] = E⇡

" 1X

k=0

�kRt+k+1

����� St =s, At =a

#
. (3.13)

We call q⇡ the action-value function for policy ⇡.

Exercise 3.12 Give an equation for v⇡ in terms of q⇡ and ⇡. ⇤
Exercise 3.13 Give an equation for q⇡ in terms of v⇡ and the four-argument p. ⇤

The value functions v⇡ and q⇡ can be estimated from experience. For example, if an
agent follows policy ⇡ and maintains an average, for each state encountered, of the actual
returns that have followed that state, then the average will converge to the state’s value,
v⇡(s), as the number of times that state is encountered approaches infinity. If separate
averages are kept for each action taken in each state, then these averages will similarly
converge to the action values, q⇡(s, a). We call estimation methods of this kind Monte
Carlo methods because they involve averaging over many random samples of actual returns.

58 Chapter 3: Finite Markov Decision Processes

3.5 Policies and Value Functions

Almost all reinforcement learning algorithms involve estimating value functions—functions
of states (or of state–action pairs) that estimate how good it is for the agent to be in a
given state (or how good it is to perform a given action in a given state). The notion
of “how good” here is defined in terms of future rewards that can be expected, or, to
be precise, in terms of expected return. Of course the rewards the agent can expect to
receive in the future depend on what actions it will take. Accordingly, value functions
are defined with respect to particular ways of acting, called policies.

Formally, a policy is a mapping from states to probabilities of selecting each possible
action. If the agent is following policy ⇡ at time t, then ⇡(a|s) is the probability that
At = a if St = s. Like p, ⇡ is an ordinary function; the “|” in the middle of ⇡(a|s)
merely reminds that it defines a probability distribution over a 2 A(s) for each s 2 S.
Reinforcement learning methods specify how the agent’s policy is changed as a result of
its experience.

Exercise 3.11 If the current state is St, and actions are selected according to stochastic
policy ⇡, then what is the expectation of Rt+1 in terms of ⇡ and the four-argument
function p (3.2)? ⇤

The value function of a state s under a policy ⇡, denoted v⇡(s), is the expected return
when starting in s and following ⇡ thereafter. For MDPs, we can define v⇡ formally by

v⇡(s)
.
= E⇡[Gt | St =s] = E⇡

" 1X

k=0

�kRt+k+1

����� St =s

#
, for all s 2 S, (3.12)

where E⇡[·] denotes the expected value of a random variable given that the agent follows
policy ⇡, and t is any time step. Note that the value of the terminal state, if any, is
always zero. We call the function v⇡ the state-value function for policy ⇡.

Similarly, we define the value of taking action a in state s under a policy ⇡, denoted
q⇡(s, a), as the expected return starting from s, taking the action a, and thereafter
following policy ⇡:

q⇡(s, a)
.
= E⇡[Gt | St =s, At = a] = E⇡

" 1X

k=0

�kRt+k+1

����� St =s, At =a

#
. (3.13)

We call q⇡ the action-value function for policy ⇡.

Exercise 3.12 Give an equation for v⇡ in terms of q⇡ and ⇡. ⇤
Exercise 3.13 Give an equation for q⇡ in terms of v⇡ and the four-argument p. ⇤

The value functions v⇡ and q⇡ can be estimated from experience. For example, if an
agent follows policy ⇡ and maintains an average, for each state encountered, of the actual
returns that have followed that state, then the average will converge to the state’s value,
v⇡(s), as the number of times that state is encountered approaches infinity. If separate
averages are kept for each action taken in each state, then these averages will similarly
converge to the action values, q⇡(s, a). We call estimation methods of this kind Monte
Carlo methods because they involve averaging over many random samples of actual returns.

62 Chapter 3: Finite Markov Decision Processes

Exercise 3.18 The value of a state depends on the values of the actions possible in that
state and on how likely each action is to be taken under the current policy. We can
think of this in terms of a small backup diagram rooted at the state and considering each
possible action:

s
taken with

probability ⇡(a|s)

v⇡(s)

q⇡(s, a)
a1 a2 a3

Give the equation corresponding to this intuition and diagram for the value at the root
node, v⇡(s), in terms of the value at the expected leaf node, q⇡(s, a), given St = s. This
equation should include an expectation conditioned on following the policy, ⇡. Then give
a second equation in which the expected value is written out explicitly in terms of ⇡(a|s)
such that no expected value notation appears in the equation. ⇤
Exercise 3.19 The value of an action, q⇡(s, a), depends on the expected next reward and
the expected sum of the remaining rewards. Again we can think of this in terms of a
small backup diagram, this one rooted at an action (state–action pair) and branching to
the possible next states:

s, a q⇡(s, a)

s0
3s0

2
s0
1

r1 r2 r3

expected
rewards

v⇡(s0)

Give the equation corresponding to this intuition and diagram for the action value,
q⇡(s, a), in terms of the expected next reward, Rt+1, and the expected next state value,
v⇡(St+1), given that St =s and At =a. This equation should include an expectation but
not one conditioned on following the policy. Then give a second equation, writing out the
expected value explicitly in terms of p(s0, r |s, a) defined by (3.2), such that no expected
value notation appears in the equation. ⇤

3.6 Optimal Policies and Optimal Value Functions

Solving a reinforcement learning task means, roughly, finding a policy that achieves a lot
of reward over the long run. For finite MDPs, we can precisely define an optimal policy
in the following way. Value functions define a partial ordering over policies. A policy ⇡ is
defined to be better than or equal to a policy ⇡0 if its expected return is greater than
or equal to that of ⇡0 for all states. In other words, ⇡ � ⇡0 if and only if v⇡(s) � v⇡0(s)
for all s 2 S. There is always at least one policy that is better than or equal to all other
policies. This is an optimal policy. Although there may be more than one, we denote all
the optimal policies by ⇡⇤. They share the same state-value function, called the optimal
state-value function, denoted v⇤, and defined as

v⇤(s)
.
= max

⇡

v⇡(s), (3.15)

for all s 2 S.

Dynamic programming

✓ Dynamic programming (DP) is a way of knowing values and optimal policies
when the model of the environment’s dynamics is given

✓ If in a problem the model is given to the agent, it can use DP

✓ Often the agent is only given an estimate of the model if at all or …

✓ The agent estimates the model through experience (model learning)

✓ Or a designer tests their agent by comparing agent’s performance against true
values / optimal policies in a toy MDP

✓ Generally, mechanisms that use a given model as opposed to experience to
improve performance are known as planning methods

Two key ideas underlying DP methods:
(1) Fixed-point iteration

vπ(s) = ∑
a

π(a |s)∑
s′ �,r

p(s′�, r |s, a)[r + γvπ(s′�)]

vk+1(s) ·= ∑
a

π(a |s)∑
s′�,r

p(s′�, r |s, a)[r + γvk(s′�)]

Bellman equation

Bellman update

x = f(x)

xk+1
·= f(xk)

Fixed-point equation

Fixed-point iteration

Converges under some conditions

Iterative policy evaluation

4.1. Policy Evaluation (Prediction) 75

vk+1. There are several di↵erent kinds of expected updates, depending on whether a
state (as here) or a state–action pair is being updated, and depending on the precise way
the estimated values of the successor states are combined. All the updates done in DP
algorithms are called expected updates because they are based on an expectation over all
possible next states rather than on a sample next state. The nature of an update can
be expressed in an equation, as above, or in a backup diagram like those introduced in
Chapter 3. For example, the backup diagram corresponding to the expected update used
in iterative policy evaluation is shown on page 59.

To write a sequential computer program to implement iterative policy evaluation as
given by (4.5) you would have to use two arrays, one for the old values, vk(s), and one
for the new values, vk+1(s). With two arrays, the new values can be computed one by
one from the old values without the old values being changed. Of course it is easier to
use one array and update the values “in place,” that is, with each new value immediately
overwriting the old one. Then, depending on the order in which the states are updated,
sometimes new values are used instead of old ones on the right-hand side of (4.5). This
in-place algorithm also converges to v⇡; in fact, it usually converges faster than the
two-array version, as you might expect, because it uses new data as soon as they are
available. We think of the updates as being done in a sweep through the state space. For
the in-place algorithm, the order in which states have their values updated during the
sweep has a significant influence on the rate of convergence. We usually have the in-place
version in mind when we think of DP algorithms.

A complete in-place version of iterative policy evaluation is shown in pseudocode in
the box below. Note how it handles termination. Formally, iterative policy evaluation
converges only in the limit, but in practice it must be halted short of this. The pseudocode
tests the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and stops when it is su�ciently
small.

Iterative Policy Evaluation, for estimating V ⇡ v⇡

Input ⇡, the policy to be evaluated
Algorithm parameter: a small threshold ✓ > 0 determining accuracy of estimation
Initialize V (s), for all s 2 S

+, arbitrarily except that V (terminal) = 0

Loop:
� 0
Loop for each s 2 S:

v V (s)
V (s)

P
a
⇡(a|s)

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓

Two key ideas underlying DP methods:
(2) Policy improvement

If for a policy π′� we have qπ(s, π′�(s)) ≥ vπ(s)∀s, then we also have vπ′�(s) ≥ vπ(s), ∀s

A greedy policy w.r.t. q𝜋 is such a policy

max
a

qπ(s, a) ≥ vπ(s)∀s

Policy iteration

80 Chapter 4: Dynamic Programming

s 2 S, illustrating policy improvement. Although in this case the new policy ⇡0 happens
to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, ⇡, has been improved using v⇡ to yield a better policy, ⇡0, we can then
compute v⇡0 and improve it again to yield an even better ⇡00. We can thus obtain a
sequence of monotonically improving policies and value functions:

⇡0

E�! v⇡0

I�! ⇡1

E�! v⇡1

I�! ⇡2

E�! · · · I�! ⇡⇤
E�! v⇤,

where
E�! denotes a policy evaluation and

I�! denotes a policy improvement . Each
policy is guaranteed to be a strict improvement over the previous one (unless it is already
optimal). Because a finite MDP has only a finite number of policies, this process must
converge to an optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in the box below. Note that each policy evaluation, itself an iterative computation,
is started with the value function for the previous policy. This typically results in a great
increase in the speed of convergence of policy evaluation (presumably because the value
function changes little from one policy to the next).

Policy Iteration (using iterative policy evaluation) for estimating ⇡ ⇡ ⇡⇤

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Loop:

� 0
Loop for each s 2 S:

v V (s)
V (s)

P
s0,r p(s0, r |s, ⇡(s))

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable true
For each s 2 S:

old-action ⇡(s)
⇡(s) argmax

a

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

If old-action 6= ⇡(s), then policy-stable false
If policy-stable, then stop and return V ⇡ v⇤ and ⇡ ⇡ ⇡⇤; else go to 2

80 Chapter 4: Dynamic Programming

s 2 S, illustrating policy improvement. Although in this case the new policy ⇡0 happens
to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, ⇡, has been improved using v⇡ to yield a better policy, ⇡0, we can then
compute v⇡0 and improve it again to yield an even better ⇡00. We can thus obtain a
sequence of monotonically improving policies and value functions:

⇡0

E�! v⇡0

I�! ⇡1

E�! v⇡1

I�! ⇡2

E�! · · · I�! ⇡⇤
E�! v⇤,

where
E�! denotes a policy evaluation and

I�! denotes a policy improvement . Each
policy is guaranteed to be a strict improvement over the previous one (unless it is already
optimal). Because a finite MDP has only a finite number of policies, this process must
converge to an optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in the box below. Note that each policy evaluation, itself an iterative computation,
is started with the value function for the previous policy. This typically results in a great
increase in the speed of convergence of policy evaluation (presumably because the value
function changes little from one policy to the next).

Policy Iteration (using iterative policy evaluation) for estimating ⇡ ⇡ ⇡⇤

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Loop:

� 0
Loop for each s 2 S:

v V (s)
V (s)

P
s0,r p(s0, r |s, ⇡(s))

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable true
For each s 2 S:

old-action ⇡(s)
⇡(s) argmax

a

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

If old-action 6= ⇡(s), then policy-stable false
If policy-stable, then stop and return V ⇡ v⇤ and ⇡ ⇡ ⇡⇤; else go to 2

Value iteration

4.4. Value Iteration 83

case is when policy evaluation is stopped after just one sweep (one update of each state).
This algorithm is called value iteration. It can be written as a particularly simple update
operation that combines the policy improvement and truncated policy evaluation steps:

vk+1(s)
.
= max

a

E[Rt+1 + �vk(St+1) | St =s, At =a]

= max
a

X

s0,r

p(s0, r |s, a)
h
r + �vk(s0)

i
, (4.10)

for all s 2 S. For arbitrary v0, the sequence {vk} can be shown to converge to v⇤ under
the same conditions that guarantee the existence of v⇤.

Another way of understanding value iteration is by reference to the Bellman optimality
equation (4.1). Note that value iteration is obtained simply by turning the Bellman
optimality equation into an update rule. Also note how the value iteration update is
identical to the policy evaluation update (4.5) except that it requires the maximum to be
taken over all actions. Another way of seeing this close relationship is to compare the
backup diagrams for these algorithms on page 59 (policy evaluation) and on the left of
Figure 3.4 (value iteration). These two are the natural backup operations for computing
v⇡ and v⇤.

Finally, let us consider how value iteration terminates. Like policy evaluation, value
iteration formally requires an infinite number of iterations to converge exactly to v⇤. In
practice, we stop once the value function changes by only a small amount in a sweep.
The box below shows a complete algorithm with this kind of termination condition.

Value Iteration, for estimating ⇡ ⇡ ⇡⇤

Algorithm parameter: a small threshold ✓ > 0 determining accuracy of estimation
Initialize V (s), for all s 2 S

+, arbitrarily except that V (terminal) = 0

Loop:
| � 0
| Loop for each s 2 S:
| v V (s)
| V (s) maxa

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

| � max(�, |v � V (s)|)
until � < ✓

Output a deterministic policy, ⇡ ⇡ ⇡⇤, such that
⇡(s) = argmax

a

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

Value iteration e↵ectively combines, in each of its sweeps, one sweep of policy evaluation
and one sweep of policy improvement. Faster convergence is often achieved by interposing
multiple policy evaluation sweeps between each policy improvement sweep. In general,
the entire class of truncated policy iteration algorithms can be thought of as sequences
of sweeps, some of which use policy evaluation updates and some of which use value
iteration updates. Because the max operation in (4.10) is the only di↵erence between

v* = max
a ∑

s′�,r

p(s′�, r |s, a)[r + γv*(s′�)]

vk+1
·= max

a ∑
s′�,r

p(s′�, r |s, a)[r + γvk(s′�)]

