Value Functions \& Bellman Equations

Rupam Mahmood
January 29, 2020 ALBERTA

The Bellman equation for v_{π}

overbrace (~) means changes

$$
\begin{aligned}
& v_{\pi}(s) \doteq E_{\pi}\left[G_{t} \mid S_{t}=s\right]=E_{\pi}[\overbrace{E_{\pi}}[G_{t} \mid S_{t}=s, \overbrace{A_{t}}]] \begin{array}{c}
\text { law of total } \\
\text { expectations }
\end{array} \\
& =\overbrace{\sum_{a} \pi(a \mid s)} E_{\pi}[G_{t} \mid S_{t}=s, A_{t} \overbrace{=a}] \quad \begin{array}{c}
\text { law of the unconscious } \\
\text { statistician }
\end{array} \\
& =\sum_{a} \pi(a \mid s) E_{\pi}[\overbrace{E_{\pi}}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s, A_{t}=a, \overparen{R_{t+1}, S_{t+1}}\right]]] \begin{array}{c}
\text { law of total } \\
\text { expectations }
\end{array} \\
& =\sum_{a} \pi(a \mid s) \overbrace{\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)} E_{\pi}[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s, A_{t}=a, R_{t+1} \overbrace{=r,}, S_{t+1} \overbrace{\substack{\text { law of the unconscious } \\
\text { statistician }}} \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)[r \tilde{+} \gamma E_{\pi}[G_{t+1} \mid \overbrace{S_{t+1}=s^{\prime}}]] \begin{array}{c}
\text { Markov property \& }
\end{array} \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)[r+\gamma \overbrace{v_{\pi}\left(s^{\prime}\right)}] \quad \text { definition of } v_{\pi}
\end{aligned}
$$

Worksheet question

(Exercise 3.12 in $2^{\text {nd }}$ ed.) Recall that the value $v_{\pi}(s)$ for state s when following policy π is the expected total reward (or discounted reward) the agent would receive when starting from state s and executing policy π. How can we write $v_{\pi}(s)$ in terms of the action values $q_{\pi}(s, a)$?

Optimal policies \& values

Optimal state-value $\quad v_{*}(s) \doteq E_{\pi_{*}}\left[G_{t} \mid S_{t}=s\right]=\max _{\pi} v_{\pi}(s), \forall s, ~ f i o n: ~$

Optimal
$\underset{\text { action-value }}{\text { Optimal }} q_{*}(s, a) \doteq E_{\pi_{*}}\left[G_{t} \mid S_{t}=s, A_{t}=a\right]=\max q_{\pi}(s, a), \forall s, a$ function:

$$
v_{*}(s)=\sum_{a} \pi_{*}(a \mid s) q_{*}(s, a)=\max _{a} q_{*}(s, a)
$$

An optimal policy: $\quad \pi_{*}(a \mid s)=1$ if $a=\arg \max _{b} q_{*}(s, b), \quad 0$ otherwise
where $\overline{a r g} \max$ is $\arg \max$ with ties broken in a fixed way

Bellman optimality equations

value under $\pi: \quad v_{\pi}(s) \doteq E_{\pi}\left[G_{t} \mid S_{t}=s\right]=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]$
optimal value: $\quad v_{*}(s) \doteq E_{\pi_{*}}\left[G_{t} \mid S_{t}=s\right]=\sum_{a} \pi_{*}(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right]$

$$
=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right]
$$

Writing action-value functions wrt state-value functions

$$
\begin{aligned}
q_{\pi}(s, a) & \doteq E_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=s\right] \\
& =E_{\pi}\left[E_{\pi}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s, A_{t}=s, R_{t+1}, S_{t+1}\right]\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right) E_{\pi}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s, A_{t}=s, R_{t+1}=r, S_{t+1}=s\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma E_{\pi}\left[G_{t+1} \mid S_{t+1}=s\right]\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma \sum_{a} \pi(a \mid s) q_{\pi}(s, a)\right] \quad \text { The Bellman equation for } q_{\pi}
\end{aligned}
$$

Bellman equation with expected reward $r(s, a)$

$$
v_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]
$$

$$
\begin{aligned}
\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right) r & =\sum_{a} \pi(a \mid s) \sum_{r} r \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime}, R_{t+1}=r \mid S_{t}=s, A_{t}=a\right) \\
& =\sum_{a} \pi(a \mid s) \sum_{r} r P\left(R_{t+1}=r \mid S_{t}=s, A_{t}=a\right) \begin{array}{c}
\text { due to the anvor total } \\
\text { probabilities }
\end{array} \\
& =\sum_{a} \pi(a \mid s) E\left[R_{t+1} \mid S_{t}=s, A_{t}=a\right] \\
& =\sum_{a} \pi(a \mid s) r(s, a)
\end{aligned}
$$

Therefore, $v_{\pi}(s)=\sum_{a} \pi(a \mid s)\left[r(s, a)+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) v_{\pi}\left(s^{\prime}\right)\right]$

Worksheet question

Consider the gridworld and value function in the figure below. Using your knowledge of the transition dynamics and the values (numbers in each grid cell), write down the policy corresponding to taking the greedy action with respect to the values in each state. Create a grid with the same dimension as the figure and draw an arrow in each square denoting the greedy action.

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

