CIFAR

Markov Decision Processes

Rupam Mahmood
January 24, 2020

Worksheet question 1

1. Suppose $\gamma=0.9$ and the reward sequence is $R_{1}=2, R_{2}=-2, R_{3}=0$ followed by an infinite sequence of 7 s . What are G_{1} and G_{0} ?

Worksheet question 2

2. Assume you have a bandit problem with 4 actions, where the agent can see rewards from the set $\mathcal{R}=\{-3.0,-0.1,0,4.2\}$. Assume you have the probabilities for rewards for each action: $p(r \mid a)$ for $a \in\{1,2,3,4\}$ and $r \in\{-3.0,-0.1,0,4.2\}$. How can you write this problem as an MDP? Remember that an MDP consists of $(\mathcal{S}, \mathcal{A}, \mathcal{R}, P, \gamma)$.
More abstractly, recall that a Bandit problem consists of a given action space $\mathcal{A}=$ $\{1, \ldots, k\}$ (the k arms) and the distribution over rewards $p(r \mid a)$ for each action $a \in \mathcal{A}$. Specify an MDP that corresponds to this Bandit problem.

Worksheet question 3

3. Prove that the discounted sum of rewards is always finite, if the rewards are bounded: $\left|R_{t+1}\right| \leq R_{\max }$ for all t for some finite $R_{\max }>0$.

$$
\left|\sum_{i=0}^{\infty} \gamma^{i} R_{t+1+i}\right|<\infty \quad \text { for } \gamma \in[0,1)
$$

Hint: Recall that $|a+b|<|a|+|b|$.

The reward hypothesis

That all of what we mean by goals and purposes can be well thought of as the maximization of the expected value of the cumulative sum of a received scalar signal (called reward).

The goal of a bandit agent

Maximize expected reward R

$$
\begin{gathered}
\pi(a)=P(A=a) \\
v_{\pi}=E_{\pi}[R]=E_{\pi}[E[R \mid A]]=E_{\pi}\left[q_{*}(A)\right]
\end{gathered}
$$

The goal of an agent

Contextual Bandits

Maximize expected reward R for all state S

$$
\pi(a \mid s)=P(A=a \mid S=s)
$$

$$
v_{\pi}(s)=E_{\pi}[R \mid S=s]=E_{\pi}[E[R \mid S=s, A]]=E_{\pi}\left[q_{*}(s, A)\right]
$$

MDPs

Maximize expected sum of discounted future rewards R from all states S

Maximize expected return G from all states S
return: $G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots$

$$
=R_{t+1}+\gamma G_{t+1}
$$

$$
v_{\pi}(s)=E_{\pi}\left[G_{t} \mid S_{t}=s\right]
$$

Choose policy π that maximizes
V_{π} for all state S

Choose policy π that maximizes
v_{π} for all state S

Policies

$$
\pi(a \mid s)=P(A=a \mid S=s)
$$

Expressing state-value functions \& action-value functions

Contextual Bandits

$$
\begin{gathered}
v_{\pi}(s)=E_{\pi}[R \mid S=s] \\
=E_{\pi}[E[R \mid S=s, A]]=E_{\pi}\left[q_{*}(s, A)\right] \\
\text { Law of the unconscious statisisician: }[g(X)]=\sum \mathrm{P}(X=x) g(x)
\end{gathered}
$$

$$
\begin{aligned}
& =\sum_{a} P\left(A_{t}=a \mid S_{t}=s\right) q_{*}(s, a) \\
& =\sum_{a} \pi(a \mid s) q_{*}(s, a)
\end{aligned}
$$

MDPs

$$
\begin{aligned}
& \text { state-value } \quad v_{\pi}(s)=E_{\pi}\left[G_{t} \mid S_{t}=s\right] \\
& \text { function: }
\end{aligned}
$$

$$
=E_{\pi}\left[E_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}\right]\right]=E_{\pi}\left[q_{\pi}\left(s, A_{t}\right)\right]
$$

$$
\begin{aligned}
& =\sum_{a} P\left(A_{t}=a \mid S_{t}=s\right) q_{\pi}(s, a) \\
& =\sum_{a} \pi(a \mid s) q_{\pi}(s, a)
\end{aligned}
$$

$$
q_{\pi}(s, a)=E_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right]
$$

The Bellman equation for v_{π}

return: $\quad G_{t}=R_{t+1}+\gamma G_{t+1}$
state-value function:

$$
v_{\pi}(s)=E_{\pi}\left[G_{t} \mid S_{t}=s\right]=\sum \pi(a \mid s) \sum p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right] ; \text { for all } s
$$

