

Markov Decision Processes

Rupam Mahmood

Worksheet question 1

1. Suppose $\gamma = 0.9$ and the reward sequence is $R_1 = 2, R_2 = -2, R_3 = 0$ followed by an infinite sequence of 7s. What are G_1 and G_0 ?

Worksheet question 2

2. Assume you have a bandit problem with 4 actions, where the agent can see rewards from the set $\mathcal{R} = \{-3.0, -0.1, 0, 4.2\}$. Assume you have the probabilities for rewards for each action: p(r|a) for $a \in \{1, 2, 3, 4\}$ and $r \in \{-3.0, -0.1, 0, 4.2\}$. How can you write this problem as an MDP? Remember that an MDP consists of $(\mathcal{S}, \mathcal{A}, \mathcal{R}, P, \gamma)$.

More abstractly, recall that a Bandit problem consists of a given action space $\mathcal{A} =$ $\{1, ..., k\}$ (the k arms) and the distribution over rewards p(r|a) for each action $a \in \mathcal{A}$. Specify an MDP that corresponds to this Bandit problem.

Worksheet question 3

3. Prove that the discounted sum of rewards is always finite, if the rewards are bounded: $|R_{t+1}| \leq R_{\max}$ for all t for some finite $R_{\max} > 0$.

$$\left|\sum_{i=0}^{\infty} \gamma^{i} R_{t+1+i}\right| < \infty$$

Hint: Recall that |a + b| < |a| + |b|.

for $\gamma \in [0, 1)$

The reward hypothesis

That all of what we mean by goals and purposes can be well thought of as the maximization of the expected value of the cumulative sum of a received scalar signal (called reward).

The goal of a bandit agent

Maximize expected reward *R*

 $v_{\pi} = E_{\pi}[R] = E_{\pi}[E[R|A]] = E_{\pi}[q_*(A)]$

Choose policy π that maximizes V_{π}

 $\pi(a) = P(A = a)$

The goal of an agent

Contextual Bandits

Maximize expected reward *R* **for all state** *S*

$$\pi(a \mid s) = P(A = a \mid S = s)$$

 $v_{\pi}(s) = E_{\pi}[R | S = s] = E_{\pi}[E[R | S = s, A]] = E_{\pi}[q_*(s, A)]$

Choose policy π **that maximizes** v_{π} for all state *S*

<u>MDPs</u>

Maximize expected sum of discounted future rewards *R* from all states *S*

Maximize expected return *G* **from all states** *S*

return:
$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$$

= $R_{t+1} + \gamma G_{t+1}$

$$v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$$

Choose policy π **that maximizes** v_{π} for all state *S*

 $\pi(a \mid s) = P(A = a \mid S = s)$

Expressing state-value functions & action-value functions

Contextual Bandits

$$v_{\pi}(s) = E_{\pi}[R \mid S = s]$$
 stat

$$= E_{\pi}[E[R | S = s, A]] = E_{\pi}[q_*(s, A)]$$

Law of the unconscious statistician: $E[g(X)] = \sum P(X=x) g(x)$

$$= \sum_{a} P(A_t = a | S_t = s)q_*(s, a)$$
$$= \sum_{a} \pi(a | s)q_*(s, a)$$

<u>MDPs</u>

te-value function:

$$v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$$

$$= E_{\pi}[E_{\pi}[G_{t} | S_{t} = s, A_{t}]] = E_{\pi}[q_{\pi}(s, A_{t})]$$

$$= \sum_{a} P(A_t = a | S_t = s) q_{\pi}(s, a)$$
$$= \sum_{a} \pi(a | s) q_{\pi}(s, a)$$

action-value function:

$$q_{\pi}(s, a) = E_{\pi}[G_t | S_t = s, A_t = a]$$

The Bellman equation for v_{π}

return: $G_t = R_{t+1} + \gamma G_{t+1}$

state-value function: S

$v_{\pi}(s) = E_{\pi}[G_t | S_t = s] = \sum \pi(a | s) \sum p(s', r | s, a)[r + \gamma v_{\pi}(s')];$ for all s S', r