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1. Suppose � = 0.9 and the reward sequence is R1 = 2, R2 = �2, R3 = 0 followed by an infinite

sequence of 7s. What are G1 and G0?
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2. Assume you have a bandit problem with 4 actions, where the agent can see rewards from the

set R = {�3.0,�0.1, 0, 4.2}. Assume you have the probabilities for rewards for each action:

p(r|a) for a 2 {1, 2, 3, 4} and r 2 {�3.0,�0.1, 0, 4.2}. How can you write this problem as

an MDP? Remember that an MDP consists of (S,A,R, P, �).

More abstractly, recall that a Bandit problem consists of a given action space A =

{1, ..., k} (the k arms) and the distribution over rewards p(r|a) for each action a 2 A.

Specify an MDP that corresponds to this Bandit problem.
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3. Prove that the discounted sum of rewards is always finite, if the rewards are bounded:

|Rt+1|  Rmax for all t for some finite Rmax > 0.

�����

1X

i=0

�iRt+1+i

����� < 1 for � 2 [0, 1)

Hint: Recall that |a+ b| < |a|+ |b|.
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The reward hypothesis

That all of what we mean by goals and purposes can be well 

thought of as the maximization of the expected value of the 

cumulative sum of a received scalar signal (called reward).



The goal of a bandit agent

Maximize expected reward R

vπ = Eπ[R] = Eπ[E[R |A]] = Eπ[q*(A)]

π(a) = P(A = a)

Choose policy 𝜋 that maximizes v𝜋



The goal of an agent

Maximize expected reward R for all state S

vπ(s) = Eπ[R |S = s] = Eπ[E[R |S = s, A]] = Eπ[q*(s, A)]

π(a |s) = P(A = a |S = s)

Choose policy 𝜋 that maximizes  
v𝜋 for all state S

Maximize expected sum of discounted  
future rewards R from all states S

Maximize expected return G from all states S

= Rt+1 + γGt+1

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ⋯return:

Choose policy 𝜋 that maximizes  
v𝜋 for all state S

vπ(s) = Eπ[Gt |St = s]

Contextual Bandits MDPs
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4. Prove that the discounted sum of rewards is always finite, if the rewards are bounded:
|Rt+1|  Rmax for all t for some finite Rmax > 0.

�����

1X

i=0

�iRt+1+i

����� < 1 for � 2 [0, 1)

Hint: Recall that |a+ b| < |a|+ |b|.

5. Consider the continuing MDP shown on the bottom. The only decision to be made is
that in the top state, where two actions are available, left and right. The numbers show
the rewards that are received deterministically after each action. There are exactly two
deterministic policies, ⇡left and ⇡right. What policy is optimal if � = 0? If � = 0.9? If
� = 0.5?
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Policies

1

2 3

play study 

π(a |s) = P(A = a |S = s)



Expressing state-value functions & action-value functions

vπ(s) = Eπ[Gt |St = s]

= Eπ[Eπ[Gt |St = s, At]]

vπ(s) = Eπ[R |S = s]

= Eπ[E[R |S = s, A]] = Eπ[q*(s, A)] = Eπ[qπ(s, At)]

Contextual Bandits MDPs

= ∑
a

P(At = a |St = s)qπ(s, a)

Law of the unconscious statistician: E[ g(X) ] = ∑ P(X=x) g(x) 

= ∑
a

π(a |s)qπ(s, a)

= ∑
a

P(At = a |St = s)q*(s, a)

= ∑
a

π(a |s)q*(s, a)

qπ(s, a) = Eπ[Gt |St = s, At = a]action-value 
function:

state-value 
function:



The Bellman equation for v𝜋

vπ(s) = Eπ[Gt |St = s] = ∑
s

π(a |s)∑
s′�,r

p(s′�, r |s, a)[r + γvπ(s′�)];  for all sstate-value 
function:

Gt = Rt+1 + γGt+1return:


