CIFAR

Markov Decision Processes

Rupam Mahmood
January 22, 2020

MDPs review

Probability of an outcome
or a sequence of experience: $P\left(S_{0}=s_{0}, A_{0}=a_{0}, R_{1}=r_{1}, S_{1}=s_{1}, A_{1}=a_{1}, R_{2}=r_{2}, \cdots\right)$
history (everything before S_{t}): $\quad H_{t}=\left(S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{2}, \cdots, S_{t-1}, A_{t-1}, R_{t}\right)$

Probability of sequence up to S_{t+1} :

$$
P\left(H_{t}=h, S_{t}=s, A_{t}=a, R_{t+1}=r, S_{t+1}=s^{\prime}\right)
$$

$$
\begin{gathered}
=P\left(R_{t+1}=r, S_{t+1}=s^{\prime} \mid S_{t}=s, A_{t}=a\right) P\left(A_{t}=a \mid S_{t}=s\right) P\left(H_{t}=h, S_{t}=s\right) \\
\quad \text { shorthands: } \\
P\left(R_{t+1}=r, S_{t+1}=s^{\prime} \mid S_{t}=s, A_{t}=a\right)=p\left(r, s^{\prime} \mid s, a\right) ; \quad P\left(A_{t}=a \mid S_{t}=s\right)=\pi(a \mid s)
\end{gathered}
$$

previous reward
state and action

Example 1: An MDP

State S is the location and the orientation: $(1, \rightarrow)$

$$
\text { Action is } \leftarrow \text { or } \rightarrow
$$

Reward is +1 for any action at location 2, and 0 otherwise

$$
\begin{aligned}
& P\left(S_{t+1}=(2, \rightarrow) \mid S_{t}=(1, \rightarrow), A_{t}=\rightarrow\right)=1 \\
& P\left(S_{t+1}=(2, \leftarrow) \mid S_{t}=(2, \rightarrow), A_{t}=\leftarrow\right)=1
\end{aligned}
$$

Example 1 (continued): The state-transition diagram

Example 1 (continued): A sample sequence

$$
\begin{array}{lllllll}
S_{0} & A_{0} & R_{1} & S_{1} & A_{1} & R_{2} & S_{2} \\
\rightarrow \square & \rightarrow & 0 \square \rightarrow & \rightarrow & 1 \square \rightarrow
\end{array}
$$

$$
\begin{array}{lllll}
A_{2} & R_{3} S_{3} & A_{3} & R_{4} S_{5} \\
\leftarrow & \leftarrow \square \leftarrow & \leftarrow & \boxed{\square}
\end{array}
$$

Example 2: Not an MDP

State O is just the location: 1

Action is \leftarrow or \rightarrow

Reward is +1 for any action at location 2, and 0 otherwise

Show that: $P\left(O_{t+1}=2 \mid O_{t}=2, A_{t}=\leftarrow\right) \neq P\left(O_{t+1}=2 \mid O_{t}=2, A_{t}=\leftarrow, R_{t}=0\right)$ That is state O is not Markov

Example 2: Not an MDP (continued)

Show that: $P\left(O_{t+1}=2 \mid O_{t}=2, A_{t}=\leftarrow\right) \neq P\left(O_{t+1}=2 \mid O_{t}=2, A_{t}=\leftarrow, R_{t}=0\right)$

$$
P\left(O_{t+1}=2 \mid O_{t}=2, A_{t}=\leftarrow\right)
$$

$$
P\left(O_{t+1}=2 \mid O_{t}=2, A_{t}=\leftarrow\right) \neq 0 \text { or } 1
$$

Example 2: Not an MDP (continued)

Show that: $P\left(O_{t+1}=2 \mid O_{t}=2, A_{t}=\leftarrow\right) \neq P\left(O_{t+1}=2 \mid O_{t}=2, A_{t}=\leftarrow, R_{t}=0\right)$

$$
P\left(O_{t+1}=2 \mid O_{t}=2, A_{t}=\leftarrow, R_{t}=0\right)
$$

The goal of a bandit agent

Maximize expected reward R

$$
\begin{gathered}
\pi(a)=P(A=a) \\
v_{\pi}=E_{\pi}[R]=E_{\pi}[E[R \mid A]]=E_{\pi}\left[q_{*}(A)\right]
\end{gathered}
$$

The goal of a contextual bandit agent

Maximize expected reward R for all state S

$$
\begin{gathered}
\pi(a \mid s)=P(A=a \mid S=s) \\
v_{\pi}(s)=E_{\pi}[R \mid S=s]=E_{\pi}[E[R \mid S=s, A]]=E_{\pi}\left[q_{*}(s, A)\right]
\end{gathered}
$$

Choose policy π that maximizes v_{π} for all state S

The goal of an agent in an MDP

Maximize expected sum of discounted future rewards R from all states S

Maximize expected return G from all states S
return: $G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots$

$$
=R_{t+1}+\gamma G_{t+1}
$$

value function: $\quad v_{\pi}(s)=E_{\pi}\left[G_{t} \mid S_{t}=s\right]$

Choose policy π that maximizes v_{π} for all state S

Worksheet question 1

1. Suppose $\gamma=0.9$ and the reward sequence is $R_{1}=2, R_{2}=-2, R_{3}=0$ followed by an infinite sequence of 7 s . What are G_{1} and G_{0} ?

Worksheet question 2

2. Assume you have a bandit problem with 4 actions, where the agent can see rewards from the set $\mathcal{R}=\{-3.0,-0.1,0,4.2\}$. Assume you have the probabilities for rewards for each action: $p(r \mid a)$ for $a \in\{1,2,3,4\}$ and $r \in\{-3.0,-0.1,0,4.2\}$. How can you write this problem as an MDP? Remember that an MDP consists of $(\mathcal{S}, \mathcal{A}, \mathcal{R}, P, \gamma)$.
More abstractly, recall that a Bandit problem consists of a given action space $\mathcal{A}=$ $\{1, \ldots, k\}$ (the k arms) and the distribution over rewards $p(r \mid a)$ for each action $a \in \mathcal{A}$. Specify an MDP that corresponds to this Bandit problem.

Worksheet question 3

3. Prove that the discounted sum of rewards is always finite, if the rewards are bounded: $\left|R_{t+1}\right| \leq R_{\max }$ for all t for some finite $R_{\max }>0$.

$$
\left|\sum_{i=0}^{\infty} \gamma^{i} R_{t+1+i}\right|<\infty \quad \text { for } \gamma \in[0,1)
$$

Hint: Recall that $|a+b|<|a|+|b|$.

The reward hypothesis

That all of what we mean by goals and purposes can be well thought of as the maximization of the expected value of the cumulative sum of a received scalar signal (called reward).

