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MDPs review

P(S0 = s0, A0 = a0, R1 = r1, S1 = s1, A1 = a1, R2 = r2, ⋯)

P(Ht = h, St = s, At = a, Rt+1 = r, St+1 = s′�)

Ht = (S0, A0, R1, S1, A1, R2, ⋯, St−1, At−1, Rt)history (everything before St):

= P(Rt+1 = r, St+1 = s′�|St = s, At = a)P(At = a |St = s)P(Ht = h, St = s)

P(Rt+1 = r, St+1 = s′�|St = s, At = a) = p(r, s′�|s, a); P(At = a |St = s) = π(a |s)

= p(r, s′�|s, a)π(a |s)p(r̄, s | s̄, ā)π(ā | s̄)⋯

previous reward 
state and action

Probability of an outcome 
or a sequence of experience:

Probability of sequence 
up to St+1:

shorthands:



Example 1: An MDP

State S is the location and the orientation: (1, →)

1 2

Action is ← or →

Reward is +1 for any action at location 2, and 0 otherwise

P(St+1 = (2, → ) |St = (1, → ), At = → ) = 1

P(St+1 = (2, ← ) |St = (2, → ), At = ← ) = 1



Example 1 (continued): The state-transition diagram
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Example 1 (continued): A sample sequence

S0 A0 R1 S1
0

A1 R2 S2
1

A2 R3 S3
1

A3 R4 S5
1



Example 2: Not an MDP

State O is just the location: 1

1 2

Action is ← or →

Reward is +1 for any action at location 2, and 0 otherwise

Show that: P(Ot+1 = 2 |Ot = 2,At = ← ) ≠ P(Ot+1 = 2 |Ot = 2,At = ← , Rt = 0)

That is state O is not Markov
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Example 2: Not an MDP (continued)

P(Ot+1 = 2 |Ot = 2,At = ← )

Show that: P(Ot+1 = 2 |Ot = 2,At = ← ) ≠ P(Ot+1 = 2 |Ot = 2,At = ← , Rt = 0)

At = ← ?

Ot+1 = 2

?

Ot = 2

P(Ot+1 = 2 |Ot = 2,At = ← ) ≠ 0 or 1



Example 2: Not an MDP (continued)

Show that: P(Ot+1 = 2 |Ot = 2,At = ← ) ≠ P(Ot+1 = 2 |Ot = 2,At = ← , Rt = 0)

P(Ot+1 = 2 |Ot = 2,At = ← , Rt = 0)

X
At = ← ?

Ot+1 = 2

?

Ot = 2

Rt = 0

Ot−1 = 1

? At−1 = →

X
P(Ot+1 = 2 |Ot = 2,At = ← , Rt = 0) = 1



The goal of a bandit agent

Maximize expected reward R

vπ = Eπ[R] = Eπ[E[R |A]] = Eπ[q*(A)]

π(a) = P(A = a)

Choose policy 𝜋 that maximizes v𝜋



The goal of a contextual bandit agent

Maximize expected reward R for all state S

vπ(s) = Eπ[R |S = s] = Eπ[E[R |S = s, A]] = Eπ[q*(s, A)]

π(a |s) = P(A = a |S = s)

Choose policy 𝜋 that maximizes v𝜋 for all state S



The goal of an agent in an MDP

Maximize expected sum of discounted future rewards R from all states S

Maximize expected return G from all states S

= Rt+1 + γGt+1

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ⋯return:

Choose policy 𝜋 that maximizes v𝜋 for all state S

vπ(s) = Eπ[Gt |St = s]value function:
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1. Suppose � = 0.9 and the reward sequence is R1 = 2, R2 = �2, R3 = 0 followed by an infinite

sequence of 7s. What are G1 and G0?
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2. Assume you have a bandit problem with 4 actions, where the agent can see rewards from the

set R = {�3.0,�0.1, 0, 4.2}. Assume you have the probabilities for rewards for each action:

p(r|a) for a 2 {1, 2, 3, 4} and r 2 {�3.0,�0.1, 0, 4.2}. How can you write this problem as

an MDP? Remember that an MDP consists of (S,A,R, P, �).

More abstractly, recall that a Bandit problem consists of a given action space A =

{1, ..., k} (the k arms) and the distribution over rewards p(r|a) for each action a 2 A.

Specify an MDP that corresponds to this Bandit problem.
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3. Prove that the discounted sum of rewards is always finite, if the rewards are bounded:

|Rt+1|  Rmax for all t for some finite Rmax > 0.

�����

1X

i=0

�iRt+1+i

����� < 1 for � 2 [0, 1)

Hint: Recall that |a+ b| < |a|+ |b|.
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The reward hypothesis

That all of what we mean by goals and purposes can be well 

thought of as the maximization of the expected value of the 

cumulative sum of a received scalar signal (called reward).


