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MDPs review

Probability of an outcome
or a sequence of experience: P(Sy = 59, Ag = ap, Ry = 11,5, = 51,41 = a;, Ry =1y, )

history (everything before S)):  H, = (S, Ag, R, 51, A1, Ry, -+, 8,1, A,_1, R)

Probability of sequence . . _ _ L
up to Si.1: P(Ht = h, St _ S’At = d, Rt+1 = 1 St+1 — S)

=PR. =1,85.,=515=5,A=a)PA,=al|S,=s)P(H,=h,S, =)

shorthands:

PR . =71,8,,=51S=s,A=a)=prs'|s,a); PA =alS,=s)=na(als)

— p(l",Sll 5, Cl)]Z'(Cl ‘ S)p(l%s ‘ Tg, ?)ﬂ({l ‘ E)

previous reward
state and action




Example 1: An MDP

State S is the location and the orientation: (1, )

Actionis < or —

Reward is +1 for any action at location 2, and 0 otherwise

P(SH_l:(2,—>)‘St:(1,—>),At:—>):1

P(St+1:(29(_)‘St:(za_:')aAt:(_):1




Example 1 (continued): The state-transition diagram




Example 1 (continued): A sample sequence

S0 Ag Ky 51 A Ky 5
-1 -0 - 1

A, R, S, A; R, S
- 1 - 1




Example 2: Not an MDP

State O is just the location: 1

Actionis < or —

Reward is +1 for any action at location 2, and 0 otherwise

Show that: P(O,,, =2|0,=2,A,= <) # P(O,,, =2|0,=2A,= < ,R, = 0)

That is state O is not Markov




Example 2: Not an MDP (continued)
Show that: P(0,,, =2|0,=2A,= < ) # P(0,,, =2]|0,=2.A, = « ,R, = 0)

PO,,,=2|0,=2A,= <)

Oy =2

PO,,,=2|0,=2A =< )#0o0r 1




Example 2: Not an MDP (continued)

Show that: P(O,,, =2|0,=2,A, =< )# PO, ,=2|0,=2A,= < ,R, = 0)
P(O,,,=2|0,=2A,= < ,R =0)

0,="2

PO,,,=2|0,=2A =« R =0) =1



The goal of a bandit agent

Maximize expected reward R

n(a) = P(A =a)

ve = E[R] = EJE[R|A]] = E,[g.(A))

Choose policy 7 that maximizes v,




The goal of a contextual bandit agent

Maximize expected reward R for all state S

n(a|ls)=PA=al|S =ys)

v(s)=E[R|S=s]=E_E[R|S =s,A]] = E_[g:(s,A)]

Choose policy = that maximizes v, for all state S




The goal of an agent in an MDP

Maximize expected sum of discounted future rewards R from all states S
Maximize expected return G from all states S
return: Gt = Rt+1 —+ ;/Rt+2 + 7’th+3 + ...
=R +76,4

value function: Vv (s) = E_[G,|S, = 5]

Choose policy = that maximizes v, for all state S




Worksheet question 1

1. Suppose v = 0.9 and the reward sequence is R; = 2, Ry = —2, R3 = 0 followed by an infinite
sequence of 7s. What are G; and Gy?




Worksheet question 2

2. Assume you have a bandit problem with 4 actions, where the agent can see rewards from the
set R = {—3.0,—0.1,0,4.2}. Assume you have the probabilities for rewards for each action:
p(rla) for a € {1,2,3,4} and r € {—3.0,—0.1,0,4.2}. How can you write this problem as
an MDP? Remember that an MDP consists of (S5, A4, R, P, 7).

More abstractly, recall that a Bandit problem consists of a given action space A =
{1,...,k} (the k£ arms) and the distribution over rewards p(r|a) for each action a € A.
Specity an MDP that corresponds to this Bandit problem.




Worksheet question 3

3. Prove that the discounted sum of rewards is always finite, if the rewards are bounded:
|Rii 1| < Rpax for all t for some finite R, > 0.

ZviRHHi < 00 for v € |0, 1)
i=0

Hint: Recall that |a 4+ b| < |a| + |b|.




The reward hypothesis

That all of what we mean by goals and purposes can be well
thought of as the maximization of the expected value of the

cumulative sum of a received scalar signal (called reward).




