Markov Decision Processes

Rupam Mahmood
January 20, 2020 ALBERTA

Admin

\checkmark This week's assignment and deadline are a bit different
\checkmark The assignment is divided into two parts: submission and review
$\checkmark \quad$ Submissions (due Thursday) will be graded according to the median of three reviews (due Sunday)
\checkmark However, if someone submits and does not participate in reviewing, they get 0

Bandits review

\checkmark What is the experiment?
\checkmark What are the outcomes?
$\checkmark \quad$ What are the random variables involved?

$$
P(A=a, R=r)=P(R=r \mid A=a) P(A=a)
$$

Contextual bandits

$$
\begin{aligned}
& P(S=s, A=a, R=r) \\
& =P(R=r \mid S=s, A=a) P(S=s, A=a) \\
& =P(R=r \mid S=s, A=a) P(A=a \mid S=s) P(S=s)
\end{aligned}
$$

Markov decision processes

$\checkmark \quad$ What is the experiment?
\checkmark What are the outcomes?
$\checkmark \quad$ What are the random variables involved?

$$
\left.\begin{array}{c}
P\left(S_{0}=s_{0}, A_{0}=a_{0}, R_{1}=r_{1}, S_{1}=s_{1}, A_{1}=a_{1}, R_{2}=r_{2}, \cdots\right) \\
\text { history: } \quad H_{t}=\left(S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{2}, \cdots, S_{t-1}, A_{t-1}, R_{t}\right) \\
P\left(H_{t}=h, S_{t}=s, A_{t}=a, R_{t+1}=r, S_{t+1}=s^{\prime}\right) \\
=P\left(R_{t+1}=r, S_{t+1}=s^{\prime} \mid H_{t}=h, S_{t}=s, A_{t}=a\right) P\left(A_{t}=a \mid H_{t}=h, S_{t}=s\right) P\left(H_{t}=h, S_{t}=s\right) \\
=P\left(R_{t+1}=r, S_{t+1}=s^{\prime} \mid S_{t}=s, A_{t}=a\right) P\left(A_{t}=a \mid S_{t}=s\right) P\left(H_{t}=h, S_{t}=s\right) \\
\text { Markov property choice that } \\
\text { Same logic applies } \\
\text { does not hurt } \\
\text { here recursively }
\end{array}\right)
$$

Example 1: An MDP

State is the location and the orientation: $(1, \rightarrow)$

$$
\text { Action is } \leftarrow \text { or } \rightarrow
$$

Reward is +1 for any action at location 2, and 0 otherwise

$$
\begin{aligned}
& P\left(S_{t+1}=(2, \rightarrow) \mid S_{t}=(1, \rightarrow), A_{t}=\rightarrow\right)=1 \\
& P\left(S_{t+1}=(2, \leftarrow) \mid S_{t}=(2, \rightarrow), A_{t}=\leftarrow\right)=1
\end{aligned}
$$

Example 1 (continued): A sample sequence

$$
\begin{array}{lllllll}
S_{0} & A_{0} & R_{1} & S_{1} & A_{1} & R_{2} & S_{2} \\
\rightarrow \square & \rightarrow & 0 \square \rightarrow & \rightarrow & 1 \square \rightarrow
\end{array}
$$

$$
\begin{array}{lllll}
A_{2} & R_{3} S_{3} & A_{3} & R_{4} S_{5} \\
\leftarrow & \leftarrow \square \leftarrow & \leftarrow & \boxed{\square}
\end{array}
$$

Example 2: Not an MDP

State is just the location: 1

Action is \leftarrow or \rightarrow

Reward is +1 for any action at location 2, and 0 otherwise

Show that: $P\left(S_{t+1}=2 \mid S_{t}=2, A_{t}=\leftarrow\right) \neq P\left(S_{t+1}=2 \mid R_{t}=0, S_{t}=2, A_{t}=\leftarrow\right)$

