
Multi-armed Bandits

Rupam Mahmood

January 15, 2020R L
IA

&

Expectations review

✓ Expectation: E[X] = ∑x P(X=x)

✓ summarizes the outcomes of an experiments

✓ Conditional expectation w.r.t. an event: E[X |Y=y] = ∑x P(X=x|Y=y)

✓ Conditional expectation w.r.t a random variable: E[X |Y]

✓ … is a random variable that maps outcomes to numbers:

✓ E[X |Y](y) = E[X |Y=y]

✓ … is a function of Y that “best approximates” X

Worksheet question 1

Action values

q*(a) ·= E[R |A = a]

✓ What is the sample space?

✓ What is the optimal behavior?

Estimating action values

Qn+1 =
1
n

n

∑
i=1

Ri =
1
n

n−1

∑
i=1

Ri +
1
n

Rn

=
n − 1

n
1

n − 1

n−1

∑
i=1

Ri

?

+
1
n

Rn

= (1 −
1
n) Qn +

1
n

Rn

= Qn +
1
n (Rn − Qn)

Life of a bandit agent

Initialize N and Q

Loop forever:

 take an action A based on Q and an action-selection strategy

 Observe reward R

 Update estimates N and Q

Pseudocode

32 Chapter 2: Multi-armed Bandits

method uses the step-size parameter 1

n
. In this book we denote the step-size parameter

by ↵ or, more generally, by ↵t(a).
Pseudocode for a complete bandit algorithm using incrementally computed sample

averages and "-greedy action selection is shown in the box below. The function bandit(a)
is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Loop forever:

A
⇢

argmax
a
Q(a) with probability 1� " (breaking ties randomly)

a random action with probability "
R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

2.5 Tracking a Nonstationary Problem

The averaging methods discussed so far are appropriate for stationary bandit problems,
that is, for bandit problems in which the reward probabilities do not change over time.
As noted earlier, we often encounter reinforcement learning problems that are e↵ectively
nonstationary. In such cases it makes sense to give more weight to recent rewards than
to long-past rewards. One of the most popular ways of doing this is to use a constant
step-size parameter. For example, the incremental update rule (2.3) for updating an
average Qn of the n� 1 past rewards is modified to be

Qn+1

.
= Qn + ↵

h
Rn �Qn

i
, (2.5)

where the step-size parameter ↵ 2 (0, 1] is constant. This results in Qn+1 being a weighted
average of past rewards and the initial estimate Q1:

Qn+1 = Qn + ↵
h
Rn �Qn

i

= ↵Rn + (1� ↵)Qn

= ↵Rn + (1� ↵) [↵Rn�1 + (1� ↵)Qn�1]

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2Qn�1

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2↵Rn�2 +

· · · + (1� ↵)n�1↵R1 + (1� ↵)nQ1

= (1� ↵)nQ1 +
nX

i=1

↵(1� ↵)n�iRi. (2.6)

Life of an RL-glue bandit agent

…

for i in range(num_steps):

 reward, _, action, _ = rl_glue.rl_step()

32 Chapter 2: Multi-armed Bandits

method uses the step-size parameter 1

n
. In this book we denote the step-size parameter

by ↵ or, more generally, by ↵t(a).
Pseudocode for a complete bandit algorithm using incrementally computed sample

averages and "-greedy action selection is shown in the box below. The function bandit(a)
is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Loop forever:

A
⇢

argmax
a
Q(a) with probability 1� " (breaking ties randomly)

a random action with probability "
R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

2.5 Tracking a Nonstationary Problem

The averaging methods discussed so far are appropriate for stationary bandit problems,
that is, for bandit problems in which the reward probabilities do not change over time.
As noted earlier, we often encounter reinforcement learning problems that are e↵ectively
nonstationary. In such cases it makes sense to give more weight to recent rewards than
to long-past rewards. One of the most popular ways of doing this is to use a constant
step-size parameter. For example, the incremental update rule (2.3) for updating an
average Qn of the n� 1 past rewards is modified to be

Qn+1

.
= Qn + ↵

h
Rn �Qn

i
, (2.5)

where the step-size parameter ↵ 2 (0, 1] is constant. This results in Qn+1 being a weighted
average of past rewards and the initial estimate Q1:

Qn+1 = Qn + ↵
h
Rn �Qn

i

= ↵Rn + (1� ↵)Qn

= ↵Rn + (1� ↵) [↵Rn�1 + (1� ↵)Qn�1]

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2Qn�1

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2↵Rn�2 +

· · · + (1� ↵)n�1↵R1 + (1� ↵)nQ1

= (1� ↵)nQ1 +
nX

i=1

↵(1� ↵)n�iRi. (2.6)

agent step

environment step

Review & clarifications

✓ Is the action which has highest expected reward(value) the optimal
action?

✓ What exactly the stepsize is? The meaning and influence of it? and
why it could be constant?

✓ Is it possible that in e-greedy, with probability e, the action taken by
agent randomly could be the greedy action again?

