amil

CMPUT 397 Reinforcement Learning:

Rupam Mahmood
January 13, 2020

Admin review

\checkmark Getting good grades is difficult in this course
$\checkmark \quad$ There is no late submission allowed
\checkmark Our office hours \& email addresses are given in the course page
\checkmark Graded notebook (programming assignment) due this Friday
\checkmark Practice quiz for mini-course 1, module 2 (Markov Decision Processes) due this Sunday
\checkmark Reading book chapters is a must (otherwise low marks in mid-term/final exam)
\checkmark Bring paper or tablet each day

Probabilities review

$\checkmark \quad$ A probability is a non-negative number mapped from an event denoting likelihood of an event: $P(A)$
$\checkmark \quad$ What kind of object is P ?
\checkmark What kind of object is A ?
\checkmark Is the sample space an event?
$\checkmark \quad$ Definition of conditional probability: $P(A \mid B)=P(A \cap B) / P(B) \neq P(A)$
$\checkmark \quad$ What kind of object is B ?
\checkmark Law of total probabilities: $P(B)=\sum_{k} P\left(B \cap A_{k}\right)=\sum_{k} P\left(B \mid A_{k}\right) P\left(A_{k}\right)$
\checkmark What are the conditions on A_{k} ?

Expectations \& conditional expectations

\checkmark An expected value of a random variable is a weighted average of possible outcomes, where the weights are the probabilities of those outcomes

$$
E[X]=\sum_{x \in x} x P(X=x)
$$

\checkmark An expected value of a random variable conditional on another event is a weighted average of possible outcomes, where the weights are the conditional probabilities of those outcomes given the event

$$
E[X \mid Y=y]=\sum_{x \in x} x P(X=x \mid Y=y)
$$

$\checkmark \quad$ Expectation conditional on a random variable $E[X \mid Y]$ itself is a random variable, which is a function $g(Y)$ of another random variable Y

Properties of expectations

\checkmark Linearity: $E[X+Y]=E[X]+E[Y]$
\checkmark Linearity: $E[\mathrm{a} X]=a E[X]$
\checkmark Non-multiplicativity: $E[X Y] \neq E[X] E[Y]$
\checkmark Law of the unconscious statistician: $E[g(X)]=\sum_{x \in X} g(x) P(X=x)$

Expectations: example

\checkmark In the double dice-rolling experiment, What is the expected value of the sum of the two dice?

Expectations: example

$\checkmark \quad$ Show that $E[X]=E[E[X \mid Y]]$

