CMPUT 397 Reinforcement Learning:

Probabilities \& Expectations

Rupam Mahmood
January 10, 2020 alberta

Probabilities and intelligent systems

\checkmark Probability is a measure of uncertainty
\checkmark An intelligent system maximizes its "chances" of success
\checkmark Intelligent systems create a favorable future
\checkmark Probabilities and expectations are tools for reasoning about uncertain future events

Let's take the example of rolling a dice

$\checkmark \quad$ We say the probability of observing 3 is $1 / 6$
\checkmark How to express it mathematically?
\checkmark Rolling a dice is, an experiment, a repeatable process with different possible results/outcomes
\checkmark One outcome is 3 . Outcomes are mutually exclusive
\checkmark The set of all outcomes is called a sample space: $\{1,2,3,4,5,6\}$
\checkmark An event is a set of outcomes. The event of observing 4 or more: $\{4,5,6\}$
$\checkmark \quad$ Define \boldsymbol{P} as a function mapping from events to probabilities: $P(3)=1 / 6$

Probability axioms

\checkmark Non-negativity: A probability is always non-negative

$$
0 \leq P(A) \text {, for all } A \longrightarrow \text { what kind of object is this? }
$$

$\checkmark \quad$ Additivity: If $A \cap B=\{ \}$, then $P(A \cup B)=P(A)+P(B)$
\checkmark Unit measure: $P(\Omega)=1$, where Ω is the sample space
$\checkmark \quad$ What is the probability of observing 4 or more?
$\checkmark \quad P(\{4,5,6\})=P(4)+P(5)+P(6)=3 / 6=1 / 2$

Random variables

\checkmark Random variables are a convenient way to express events
\checkmark A Random variable is a function mapping from outcomes to real values
\checkmark For coin-tossing experiment: it can be $X($ head $)=1$ and $X($ tail $)=-1$
\checkmark For outcomes of dice-rolling experiment: $X(a)=a$
\checkmark It allows succinct expressions for events such as [$X \geq 4$]
which stands for $\{\omega \in \Omega: X(\omega) \geq 4\}=\{4,5,6\}$

Random variables: example

\checkmark If we roll two dices, what is the probability of the sum being more than 2 ?
\checkmark Sample space: $\{(1,1), \ldots,(1,6),(2,1), \ldots,(2,6), \ldots,(6,1), \ldots,(6,6)\}$
$\checkmark \quad$ We can define a random variable X standing for the sum
$\checkmark \quad$ Then the event of "the sum being more than 2" can be written as $[X>2]$
$\checkmark \quad$ Then $1=P(\Omega)=P([X=2] \cup[X>2])=P(X=2)+P(X>2)$

Conditional probabilities

\checkmark A conditional probability is a measure of an uncertain event when we know that another event has occurred
\checkmark In the single dice-rolling experiment, if the sum is below 4, what is the probability that the value is more than 2
$\checkmark \quad$ Definition: $P(A \mid B)=P(A \cap B) / P(B) \neq P(A)$

Conditional probabilities: example

$\checkmark \quad$ In the single dice-rolling experiment, if the sum is below 4, what is the probability that the value is more than 2

$$
\begin{array}{ll}
\checkmark & P([Z>2 \mid Z<4]) \\
\checkmark & =P([Z>2] \cap[Z<4]) / P([Z<4]) \\
\checkmark & =P([Z=3]) / P([Z<4]) \\
\checkmark & =(1 / 6) /(1 / 2)=1 / 3
\end{array}
$$

Low of total probabilities

Expectations \& conditional expectations

\checkmark An expected value of a random variable is a weighted average of possible outcomes, where the weights are the probabilities of those outcomes

$$
\mathrm{E}[X]=\sum_{x \in x} x P(X=x)
$$

\checkmark An expected value of a random variable conditional on another event is a weighted average of possible outcomes, where the weights are the conditional probabilities of those outcomes given the event

$$
\mathrm{E}[X \mid Y=y]=\sum_{x \in x} x P(X=x \mid Y=y)
$$

\checkmark Expectation conditional on a random variable $E[X \mid Y]$ itself is a random variable, which is a function of another random variable Y

Properties of expectations

\checkmark Linearity: $E[X+Y]=E[X]+E[Y]$
\checkmark Linearity: $\mathrm{E}[\mathrm{a} X]=\mathrm{aE}[X]$
\checkmark Non-multiplicativity: $\mathrm{E}[X Y] \neq \mathrm{E}[\mathrm{X}] \mathrm{E}[Y]$
\checkmark Law of the unconscious statistician: $E[g(X)]=\sum_{x \in \mathscr{X}} g(x) P(X=x)$

Expectations: example

\checkmark In the double dice-rolling experiment, What is the expected value of the sum of the two dice?

Expectations: example

\checkmark Show that $\mathrm{E}[X]=\mathrm{E}[\mathrm{E}[X \mid Y]]$

