

CMPUT 397 Reinforcement Learning:

Probabilities & Expectations

Rupam Mahmood

January 10, 2020

Probabilities and intelligent systems

- Probability is a measure of uncertainty \checkmark
- An intelligent system maximizes its "chances" of success \checkmark
- Intelligent systems create a favorable future \checkmark
- Probabilities and expectations are tools for reasoning about \checkmark uncertain future events

Let's take the example of rolling a dice

- We say the probability of observing 3 is 1/6 \checkmark
- How to express it mathematically? \checkmark
- Rolling a dice is, an **experiment**, a repeatable process \checkmark with different possible results/outcomes
- One **outcome** is 3. Outcomes are mutually exclusive \checkmark
- The set of all outcomes is called a **sample space**: { 1, 2, 3, 4, 5, 6 } \checkmark
- An event is a set of outcomes. The event of observing 4 or more: {4, 5, 6} \checkmark
- Define **P** as a function mapping from events to probabilities: P(3) = 1/6 \checkmark

Probability axioms

- **Non-negativity:** A probability is always non-negative \checkmark
- Additivity: If $A \cap B = \{\}$, then $P(A \cup A)$ \checkmark
- **Unit measure:** $P(\Omega) = 1$, where Ω is the sample space \checkmark
- What is the probability of observing 4 or more? \checkmark
- \checkmark $P(\{4, 5, 6\}) = P(4) + P(5) + P(6) = 3/6 = 1/2$

 $0 \leq P(A)$, for all $A \leftarrow what kind of object is this?$

$$B) = P(A) + P(B)$$

Random variables

- Random variables are a convenient way to express events
- A Random variable is a function mapping from outcomes to real values
- For coin-tossing experiment: it can be X(head) = 1 and X(tail) = -1
- For outcomes of dice-rolling experiment: X(a) = a
- ✓ It allows succinct expressions for events such as [X ≥ 4]
 which stands for { ω ∈ Ω: $X(ω) ≥ 4 } = { 4, 5, 6 }$

Random variables: example

- ✓ If we roll two dices, what is the probability of the sum being more than 2?
- ✓ Sample space: { (1,1), ..., (1,6), (2,1)
- \checkmark We can define a random variable X standing for the sum
- ✓ Then the event of "the sum being more than 2" can be written as [X > 2]
- ✓ Then $1 = P(\Omega) = P([X = 2] \cup [X > 2])$

$$= P(X = 2) + P(X > 2)$$

Conditional probabilities

- \checkmark that another event has occurred
- In the single dice-rolling experiment, if the sum is below 4, what is the \checkmark probability that the value is more than 2
- Definition: $P(A | B) = P(A \cap B) / P(B) \neq P(A)$ \checkmark

A conditional probability is a measure of an uncertain event when we know

Conditional probabilities: example

In the single dice-rolling experiment, if the sum is below 4, what is the \checkmark probability that the value is more than 2

✓
$$P([Z > 2 | Z < 4])$$

- $\checkmark = P([Z > 2] \cap [Z < 4]) / P([Z < 4])$
- $\checkmark = P([Z = 3]) / P([Z < 4])$
- \checkmark = (1/6) / (1/2) = 1/3

Low of total probabilities

 A_1

٦ A ₂	B∩A ₃	

 A_3

 $A_i \cap A_j = \phi, i \neq j, \quad \bigcup_i A_i = \Omega$ $P(B) = \sum_{k} P(B \cap A_k)$ $= \sum_{k} P(B \mid A_{k}) P(A_{k})$

Expectations & conditional expectations

An expected value of a random variable is a weighted average of possible \checkmark outcomes, where the weights are the probabilities of those outcomes

 $\mathbf{E}[X] = \sum_{\mathbf{x} \in \mathscr{X}} P(X=\mathbf{x})$

An expected value of a random variable conditional on another event is a \checkmark probabilities of those outcomes given the event

$$\mathbf{E}[X \mid Y=y] = \sum_{x \in \mathscr{X}} P(X=x \mid Y=y)$$

Expectation conditional on a random variable E[X | Y] itself is a random variable, which is a function of another random variable Y

weighted average of possible outcomes, where the weights are the conditional

Properties of expectations

- ✓ Linearity: E[X + Y] = E[X] + E[Y]
- ✓ Linearity: E[aX] = aE[X]
- ✓ Non-multiplicativity: $E[XY] \neq E[X] E[Y]$
- ✓ Law of the unconscious statistician: $E[g(X)] = \sum g(x) P(X=x)$

$g(X)] = \sum_{x \in \mathscr{X}} g(x) P(X=x)$

Expectations: example

 In the double dice-rolling exper the sum of the two dice?

In the double dice-rolling experiment, What is the expected value of

Expectations: example

✓ Show that E[X] = E[E[X|Y]]