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Figure 8.11: A slice through the space of reinforcement learning methods, highlighting the
two of the most important dimensions explored in Part I of this book: the depth and width of
the updates.

ranging from one-step TD updates to full-return Monte Carlo updates. Between these
is a spectrum including methods based on n-step updates (and in Chapter 12 we will
extend this to mixtures of n-step updates such as the �-updates implemented by eligibility
traces).

Dynamic programming methods are shown in the extreme upper-right corner of the
space because they involve one-step expected updates. The lower-right corner is the
extreme case of expected updates so deep that they run all the way to terminal states
(or, in a continuing task, until discounting has reduced the contribution of any further
rewards to a negligible level). This is the case of exhaustive search. Intermediate methods
along this dimension include heuristic search and related methods that search and update
up to a limited depth, perhaps selectively. There are also methods that are intermediate
along the horizontal dimension. These include methods that mix expected and sample
updates, as well as the possibility of methods that mix samples and distributions within
a single update. The interior of the square is filled in to represent the space of all such
intermediate methods.

A third dimension that we have emphasized in this book is the binary distinction
between on-policy and o↵-policy methods. In the former case, the agent learns the value
function for the policy it is currently following, whereas in the latter case it learns the
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A planning method uses the model to simulate the environment to produce simulated experience

which is used to produce/improve a policy

Learning and planning
Model of the environment: used by agent to predict environment’s response to actions

For example, if the agent has the transition probabilities p(s’,r|s,a) as in dynamic programming

Planning: a process that takes model as an input and produces/improves a policy
Dynamic programming methods are planning methods
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sum drawn according to this probability distribution. The kind of model assumed in
dynamic programming—estimates of the MDP’s dynamics, p(s0, r |s, a)—is a distribution
model. The kind of model used in the blackjack example in Chapter 5 is a sample model.
Distribution models are stronger than sample models in that they can always be used
to produce samples. However, in many applications it is much easier to obtain sample
models than distribution models. The dozen dice are a simple example of this. It would
be easy to write a computer program to simulate the dice rolls and return the sum, but
harder and more error-prone to figure out all the possible sums and their probabilities.

Models can be used to mimic or simulate experience. Given a starting state and action,
a sample model produces a possible transition, and a distribution model generates all
possible transitions weighted by their probabilities of occurring. Given a starting state
and a policy, a sample model could produce an entire episode, and a distribution model
could generate all possible episodes and their probabilities. In either case, we say the
model is used to simulate the environment and produce simulated experience.

The word planning is used in several di↵erent ways in di↵erent fields. We use the
term to refer to any computational process that takes a model as input and produces or
improves a policy for interacting with the modeled environment:

planning
model policy

In artificial intelligence, there are two distinct approaches to planning according to our
definition. State-space planning , which includes the approach we take in this book,
is viewed primarily as a search through the state space for an optimal policy or an
optimal path to a goal. Actions cause transitions from state to state, and value functions
are computed over states. In what we call plan-space planning , planning is instead a
search through the space of plans. Operators transform one plan into another, and
value functions, if any, are defined over the space of plans. Plan-space planning includes
evolutionary methods and “partial-order planning,” a common kind of planning in artificial
intelligence in which the ordering of steps is not completely determined at all stages of
planning. Plan-space methods are di�cult to apply e�ciently to the stochastic sequential
decision problems that are the focus in reinforcement learning, and we do not consider
them further (but see, e.g., Russell and Norvig, 2010).

The unified view we present in this chapter is that all state-space planning methods
share a common structure, a structure that is also present in the learning methods
presented in this book. It takes the rest of the chapter to develop this view, but there are
two basic ideas: (1) all state-space planning methods involve computing value functions
as a key intermediate step toward improving the policy, and (2) they compute value
functions by updates or backup operations applied to simulated experience. This common
structure can be diagrammed as follows:

values
backups

model
simulated
experience

policy
updatesbackups

Dynamic programming methods clearly fit this structure: they make sweeps through the
space of states, generating for each state the distribution of possible transitions. Each
distribution is then used to compute a backed-up value (update target) and update the

Model learning: the process of using real experience to improve the model

Direct reinforcement learning: the process of using real experience to directly improve the value function and policy

Indirect reinforcement learning: the process of using real experience to improve the value function and policy

using the model through planning

For example, if we are estimating the transition probabilities based on real experience

For example, TD or MC methods for prediction and control



An architecture for planning, learning and acting at the 
same time
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in the near future. If decision making and model learning are both computation-intensive
processes, then the available computational resources may need to be divided between
them. To begin exploring these issues, in this section we present Dyna-Q, a simple
architecture integrating the major functions needed in an online planning agent. Each
function appears in Dyna-Q in a simple, almost trivial, form. In subsequent sections we
elaborate some of the alternate ways of achieving each function and the trade-o↵s between
them. For now, we seek merely to illustrate the ideas and stimulate your intuition.

Within a planning agent, there are at least two roles for real experience: it can be
used to improve the model (to make it more accurately match the real environment)
and it can be used to directly improve the value function and policy using the kinds of

planning

value/policy

experiencemodel

model
learning

acting

direct
RL

reinforcement learning methods we have discussed
in previous chapters. The former we call model-
learning , and the latter we call direct reinforcement
learning (direct RL). The possible relationships
between experience, model, values, and policy are
summarized in the diagram to the right. Each ar-
row shows a relationship of influence and presumed
improvement. Note how experience can improve
value functions and policies either directly or in-
directly via the model. It is the latter, which is
sometimes called indirect reinforcement learning,
that is involved in planning.

Both direct and indirect methods have advantages and disadvantages. Indirect methods
often make fuller use of a limited amount of experience and thus achieve a better policy
with fewer environmental interactions. On the other hand, direct methods are much
simpler and are not a↵ected by biases in the design of the model. Some have argued
that indirect methods are always superior to direct ones, while others have argued that
direct methods are responsible for most human and animal learning. Related debates
in psychology and artificial intelligence concern the relative importance of cognition as
opposed to trial-and-error learning, and of deliberative planning as opposed to reactive
decision making (see Chapter 14 for discussion of some of these issues from the perspective
of psychology). Our view is that the contrast between the alternatives in all these debates
has been exaggerated, that more insight can be gained by recognizing the similarities
between these two sides than by opposing them. For example, in this book we have
emphasized the deep similarities between dynamic programming and temporal-di↵erence
methods, even though one was designed for planning and the other for model-free learning.

Dyna-Q includes all of the processes shown in the diagram above—planning, acting,
model-learning, and direct RL—all occurring continually. The planning method is the
random-sample one-step tabular Q-planning method on page 161. The direct RL method
is one-step tabular Q-learning. The model-learning method is also table-based and assumes
the environment is deterministic. After each transition St, At ! Rt+1, St+1, the model
records in its table entry for St, At the prediction that Rt+1, St+1 will deterministically
follow. Thus, if the model is queried with a state–action pair that has been experienced
before, it simply returns the last-observed next state and next reward as its prediction.

quiz: indicate 
indirect RL with 

an arrow 
(which of the 

two red ones?)
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n iterations (Steps 1–3) of the Q-planning algorithm. In the pseudocode algorithm for
Dyna-Q in the box below, Model(s, a) denotes the contents of the (predicted next state
and reward) for state–action pair (s, a). Direct reinforcement learning, model-learning,
and planning are implemented by steps (d), (e), and (f), respectively. If (e) and (f) were
omitted, the remaining algorithm would be one-step tabular Q-learning.

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all s 2 S and a 2 A(s)
Loop forever:

(a) S  current (nonterminal) state
(b) A "-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S0

(d) Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

(e) Model(S, A) R, S0 (assuming deterministic environment)
(f) Loop repeat n times:

S  random previously observed state
A random action previously taken in S
R, S0  Model(S, A)
Q(S, A) Q(S, A) + ↵

⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

Example 8.1: Dyna Maze Consider the simple maze shown inset in Figure 8.2. In
each of the 47 states there are four actions, up, down, right, and left, which take the
agent deterministically to the corresponding neighboring states, except when movement
is blocked by an obstacle or the edge of the maze, in which case the agent remains where
it is. Reward is zero on all transitions, except those into the goal state, on which it is +1.
After reaching the goal state (G), the agent returns to the start state (S) to begin a new
episode. This is a discounted, episodic task with � = 0.95.

The main part of Figure 8.2 shows average learning curves from an experiment in
which Dyna-Q agents were applied to the maze task. The initial action values were zero,
the step-size parameter was ↵ = 0.1, and the exploration parameter was " = 0.1. When
selecting greedily among actions, ties were broken randomly. The agents varied in the
number of planning steps, n, they performed per real step. For each n, the curves show
the number of steps taken by the agent to reach the goal in each episode, averaged over 30
repetitions of the experiment. In each repetition, the initial seed for the random number
generator was held constant across algorithms. Because of this, the first episode was
exactly the same (about 1700 steps) for all values of n, and its data are not shown in
the figure. After the first episode, performance improved for all values of n, but much
more rapidly for larger values. Recall that the n = 0 agent is a nonplanning agent, using
only direct reinforcement learning (one-step tabular Q-learning). This was by far the
slowest agent on this problem, despite the fact that the parameter values (↵ and ") were
optimized for it. The nonplanning agent took about 25 episodes to reach ("-)optimal
performance, whereas the n = 5 agent took about five episodes, and the n = 50 agent
took only three episodes.

Which part is direct RL? What is this method called?

Which part is model learning?

Which part is planning?



8.2. Dyna: Integrated Planning, Acting, and Learning 165

2

800

600

400

200

14
2010 30 40 50

  0 planning steps
(direct RL only)

Episodes

Steps
per

episode 5 planning steps

  50 planning steps

S

G

actions

Figure 8.2: A simple maze (inset) and the average learning curves for Dyna-Q agents varying
in their number of planning steps (n) per real step. The task is to travel from S to G as quickly
as possible.

Figure 8.3 shows why the planning agents found the solution so much faster than
the nonplanning agent. Shown are the policies found by the n = 0 and n = 50 agents
halfway through the second episode. Without planning (n = 0), each episode adds only
one additional step to the policy, and so only one step (the last) has been learned so far.
With planning, again only one step is learned during the first episode, but here during
the second episode an extensive policy has been developed that by the end of the episode
will reach almost back to the start state. This policy is built by the planning process
while the agent is still wandering near the start state. By the end of the third episode a
complete optimal policy will have been found and perfect performance attained.

S

G

S

G
WITHOUT PLANNING ( =0) WITH PLANNING ( =50)n n

Figure 8.3: Policies found by planning and nonplanning Dyna-Q agents halfway through the
second episode. The arrows indicate the greedy action in each state; if no arrow is shown for a
state, then all of its action values were equal. The black square indicates the location of the
agent.
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n iterations (Steps 1–3) of the Q-planning algorithm. In the pseudocode algorithm for
Dyna-Q in the box below, Model(s, a) denotes the contents of the (predicted next state
and reward) for state–action pair (s, a). Direct reinforcement learning, model-learning,
and planning are implemented by steps (d), (e), and (f), respectively. If (e) and (f) were
omitted, the remaining algorithm would be one-step tabular Q-learning.

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all s 2 S and a 2 A(s)
Loop forever:

(a) S  current (nonterminal) state
(b) A "-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S0

(d) Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

(e) Model(S, A) R, S0 (assuming deterministic environment)
(f) Loop repeat n times:

S  random previously observed state
A random action previously taken in S
R, S0  Model(S, A)
Q(S, A) Q(S, A) + ↵

⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

Example 8.1: Dyna Maze Consider the simple maze shown inset in Figure 8.2. In
each of the 47 states there are four actions, up, down, right, and left, which take the
agent deterministically to the corresponding neighboring states, except when movement
is blocked by an obstacle or the edge of the maze, in which case the agent remains where
it is. Reward is zero on all transitions, except those into the goal state, on which it is +1.
After reaching the goal state (G), the agent returns to the start state (S) to begin a new
episode. This is a discounted, episodic task with � = 0.95.

The main part of Figure 8.2 shows average learning curves from an experiment in
which Dyna-Q agents were applied to the maze task. The initial action values were zero,
the step-size parameter was ↵ = 0.1, and the exploration parameter was " = 0.1. When
selecting greedily among actions, ties were broken randomly. The agents varied in the
number of planning steps, n, they performed per real step. For each n, the curves show
the number of steps taken by the agent to reach the goal in each episode, averaged over 30
repetitions of the experiment. In each repetition, the initial seed for the random number
generator was held constant across algorithms. Because of this, the first episode was
exactly the same (about 1700 steps) for all values of n, and its data are not shown in
the figure. After the first episode, performance improved for all values of n, but much
more rapidly for larger values. Recall that the n = 0 agent is a nonplanning agent, using
only direct reinforcement learning (one-step tabular Q-learning). This was by far the
slowest agent on this problem, despite the fact that the parameter values (↵ and ") were
optimized for it. The nonplanning agent took about 25 episodes to reach ("-)optimal
performance, whereas the n = 5 agent took about five episodes, and the n = 50 agent
took only three episodes.

How many planning steps should we take?



Dyna-Q+
1. Adds a bonus κ τ(s, a) to reward in planning

τ(s, a) denotes the number of time steps (s, a) has not been tried

2. Actions that have not been tried from a previously visited state are allowed to be considered in planning
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n iterations (Steps 1–3) of the Q-planning algorithm. In the pseudocode algorithm for
Dyna-Q in the box below, Model(s, a) denotes the contents of the (predicted next state
and reward) for state–action pair (s, a). Direct reinforcement learning, model-learning,
and planning are implemented by steps (d), (e), and (f), respectively. If (e) and (f) were
omitted, the remaining algorithm would be one-step tabular Q-learning.

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all s 2 S and a 2 A(s)
Loop forever:

(a) S  current (nonterminal) state
(b) A "-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S0

(d) Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

(e) Model(S, A) R, S0 (assuming deterministic environment)
(f) Loop repeat n times:

S  random previously observed state
A random action previously taken in S
R, S0  Model(S, A)
Q(S, A) Q(S, A) + ↵

⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

Example 8.1: Dyna Maze Consider the simple maze shown inset in Figure 8.2. In
each of the 47 states there are four actions, up, down, right, and left, which take the
agent deterministically to the corresponding neighboring states, except when movement
is blocked by an obstacle or the edge of the maze, in which case the agent remains where
it is. Reward is zero on all transitions, except those into the goal state, on which it is +1.
After reaching the goal state (G), the agent returns to the start state (S) to begin a new
episode. This is a discounted, episodic task with � = 0.95.

The main part of Figure 8.2 shows average learning curves from an experiment in
which Dyna-Q agents were applied to the maze task. The initial action values were zero,
the step-size parameter was ↵ = 0.1, and the exploration parameter was " = 0.1. When
selecting greedily among actions, ties were broken randomly. The agents varied in the
number of planning steps, n, they performed per real step. For each n, the curves show
the number of steps taken by the agent to reach the goal in each episode, averaged over 30
repetitions of the experiment. In each repetition, the initial seed for the random number
generator was held constant across algorithms. Because of this, the first episode was
exactly the same (about 1700 steps) for all values of n, and its data are not shown in
the figure. After the first episode, performance improved for all values of n, but much
more rapidly for larger values. Recall that the n = 0 agent is a nonplanning agent, using
only direct reinforcement learning (one-step tabular Q-learning). This was by far the
slowest agent on this problem, despite the fact that the parameter values (↵ and ") were
optimized for it. The nonplanning agent took about 25 episodes to reach ("-)optimal
performance, whereas the n = 5 agent took about five episodes, and the n = 50 agent
took only three episodes.

Where would you put these steps in Dyna-Q to get Dyna-Q+?



Dyna-Q+: calculating visitation counts

S0 A0 A1S1 S2 A2 S3 A3 S4 A4

y x xx y

Consider an MDP with one actions (L) and two states with the following episode

L L L L L

Calculate τ(s, a) for all state-action pairs at each step


