CIFAR

Planning, Learning and Acting

Rupam Mahmood
March 11, 2020

Dyna-Q+

1. Adds a bonus $\kappa \sqrt{\tau(s, a)}$ to reward in planning $\tau(s, a)$ denotes the number of time steps (s, a) has not been tried
2. Actions that have not been tried from a previously visited state are allowed to be considered in planning Where would you put these steps in Dyna-Q to get Dyna-Q+?

Tabular Dyna-Q
Initialize $Q(s, a)$ and $\operatorname{Model}(s, a)$ for all $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$
Loop forever:
(a) $S \leftarrow$ current (nonterminal) state
(b) $A \leftarrow \varepsilon-\operatorname{greedy}(S, Q)$
(c) Take action A; observe resultant reward, R, and state, S^{\prime}
(d) $Q(S, A) \leftarrow Q(S, A)+\alpha\left[R+\gamma \max _{a} Q\left(S^{\prime}, a\right)-Q(S, A)\right]$
(e) $\operatorname{Model}(S, A) \leftarrow R, S^{\prime}$ (assuming deterministic environment)
(f) Loop repeat n times:
$S \leftarrow$ random previously observed state
$A \leftarrow$ random action previously taken in S
$R, S^{\prime} \leftarrow \operatorname{Model}(S, A)$

$$
Q(S, A) \leftarrow Q(S, A)+\alpha\left[R+\gamma \max _{a} Q\left(S^{\prime}, a\right)-Q(S, A)\right]
$$

Dyna-Q+: calculating visitation counts

Consider an MDP with one actions (L) and two states (x, y) with the following episode
$\begin{array}{llllllllll}S_{0} & A_{0} & S_{1} & A_{1} & S_{2} & A_{2} & S_{3} & A_{3} & S_{4} & A_{4}\end{array}$ $\begin{array}{llllllllll}y & L & x & L & x & L & y & L & x & \mathbf{L}\end{array}$

Calculate $\tau(s, a)$ for all state-action pairs at each step

Worksheet question

1. An agent observes the following two episodes from an MDP,

$$
\begin{gathered}
S_{0}=0, A_{0}=1, R_{1}=1, S_{1}=1, A_{1}=1, R_{2}=1 \\
S_{0}=0, A_{0}=0, R_{1}=0, S_{1}=0, A_{1}=1, R_{2}=1, S_{2}=1, A_{2}=1, R_{3}=1
\end{gathered}
$$

and updates its deterministic model accordingly. What would the model output for the following queries:
(a) $\operatorname{Model}(S=0, A=0)$:
(b) $\operatorname{Model}(S=0, A=1)$:
(c) $\operatorname{Model}(S=1, A=0)$:
(d) $\operatorname{Model}(S=1, A=1)$:

Worksheet question

2. An agent is in a 4 -state MDP, $\mathcal{S}=\{1,2,3,4\}$, where each state has two actions $\mathcal{A}=\{1,2\}$. Assume the agent saw the following trajectory,

$$
\begin{aligned}
& S_{0}=1, A_{0}=2, R_{1}=-1, \\
& S_{1}=1, A_{1}=1, R_{2}=1, \\
& S_{2}=2, A_{2}=2, R_{3}=-1, \\
& S_{3}=2, A_{3}=1, R_{4}=1, \\
& S_{4}=3, A_{4}=1, R_{5}=100, \\
& S_{5}=4
\end{aligned}
$$

and uses Tabular Dyna-Q with 5 planning steps for each interaction with the environment.
(a) Once the agent sees S_{5}, how many Q-learning updates has it done with real experience? How many updates has it done with simulated experience?
(b) Which of the following are possible (or not possible) simulated transitions $\left\{S, A, R, S^{\prime}\right\}$ given the above observed trajectory with a deterministic model and random search control?
i. $\left\{S=1, A=1, R=1, S^{\prime}=2\right\}$
ii. $\left\{S=2, A=1, R=-1, S^{\prime}=3\right\}$
iii. $\left\{S=2, A=2, R=-1, S^{\prime}=2\right\}$

Worksheet question

3. Modify the Tabular Dyna-Q algorithm so that it uses Expected Sarsa instead of Q-learning. Assume that the target policy is ϵ-greedy. What should we call this algorithm?

Tabular Dyna-Q

Initialize $Q(s, a)$ and $\operatorname{Model}(s, a)$ for all $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$ Loop forever:
(a) $S \leftarrow$ current (nonterminal) state
(b) $A \leftarrow \varepsilon-\operatorname{greedy}(S, Q)$
(c) Take action A; observe resultant reward, R, and state, S^{\prime}
(d) $Q(S, A) \leftarrow Q(S, A)+\alpha\left[R+\gamma \max _{a} Q\left(S^{\prime}, a\right)-Q(S, A)\right]$
(e) $\operatorname{Model}(S, A) \leftarrow R, S^{\prime}$ (assuming deterministic environment)
(f) Loop repeat n times:
$S \leftarrow$ random previously observed state
$A \leftarrow$ random action previously taken in S $R, S^{\prime} \leftarrow \operatorname{Model}(S, A)$
$Q(S, A) \leftarrow Q(S, A)+\alpha\left[R+\gamma \max _{a} Q\left(S^{\prime}, a\right)-Q(S, A)\right]$

Worksheet question

6. (Exercise 8.2 $S \mathcal{B} B$) Why did the Dyna agent with exploration bonus, Dyna-Q+, perform better in the first phase as well as in the second phase of the blocking experiment in Figure 8.4?

Figure 8.4: Average performance of Dyna agents on a blocking task. The left environment was used for the first 1000 steps, the right environment for the rest. Dyna-Q+ is Dyna-Q with an exploration bonus that encourages exploration.

Worksheet question

7. (Exercise 8.3 S $\mathcal{B} B$) Challenge Question: Careful inspection of Figure 8.5 reveals that the difference between Dyna-Q+ and Dyna-Q narrowed slightly over the first part of the experiment. What is the reason for this?

Figure 8.5: Average performance of Dyna agents on a shortcut task. The left environment was used for the first 3000 steps, the right environment for the rest.

