
Planning, Learning and Acting

Rupam Mahmood

March 11, 2020R L
IA

&

Dyna-Q+
1. Adds a bonus κ τ(s, a) to reward in planning

τ(s, a) denotes the number of time steps (s, a) has not been tried

2. Actions that have not been tried from a previously visited state are allowed to be considered in planning

164 Chapter 8: Planning and Learning with Tabular Methods

n iterations (Steps 1–3) of the Q-planning algorithm. In the pseudocode algorithm for
Dyna-Q in the box below, Model(s, a) denotes the contents of the (predicted next state
and reward) for state–action pair (s, a). Direct reinforcement learning, model-learning,
and planning are implemented by steps (d), (e), and (f), respectively. If (e) and (f) were
omitted, the remaining algorithm would be one-step tabular Q-learning.

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all s 2 S and a 2 A(s)
Loop forever:

(a) S current (nonterminal) state
(b) A "-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S0

(d) Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

(e) Model(S, A) R, S0 (assuming deterministic environment)
(f) Loop repeat n times:

S random previously observed state
A random action previously taken in S
R, S0 Model(S, A)
Q(S, A) Q(S, A) + ↵

⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

Example 8.1: Dyna Maze Consider the simple maze shown inset in Figure 8.2. In
each of the 47 states there are four actions, up, down, right, and left, which take the
agent deterministically to the corresponding neighboring states, except when movement
is blocked by an obstacle or the edge of the maze, in which case the agent remains where
it is. Reward is zero on all transitions, except those into the goal state, on which it is +1.
After reaching the goal state (G), the agent returns to the start state (S) to begin a new
episode. This is a discounted, episodic task with � = 0.95.

The main part of Figure 8.2 shows average learning curves from an experiment in
which Dyna-Q agents were applied to the maze task. The initial action values were zero,
the step-size parameter was ↵ = 0.1, and the exploration parameter was " = 0.1. When
selecting greedily among actions, ties were broken randomly. The agents varied in the
number of planning steps, n, they performed per real step. For each n, the curves show
the number of steps taken by the agent to reach the goal in each episode, averaged over 30
repetitions of the experiment. In each repetition, the initial seed for the random number
generator was held constant across algorithms. Because of this, the first episode was
exactly the same (about 1700 steps) for all values of n, and its data are not shown in
the figure. After the first episode, performance improved for all values of n, but much
more rapidly for larger values. Recall that the n = 0 agent is a nonplanning agent, using
only direct reinforcement learning (one-step tabular Q-learning). This was by far the
slowest agent on this problem, despite the fact that the parameter values (↵ and ") were
optimized for it. The nonplanning agent took about 25 episodes to reach ("-)optimal
performance, whereas the n = 5 agent took about five episodes, and the n = 50 agent
took only three episodes.

Where would you put these steps in Dyna-Q to get Dyna-Q+?

Dyna-Q+: calculating visitation counts

S0 A0 A1S1 S2 A2 S3 A3 S4 A4

y x xx y

Consider an MDP with one actions (L) and two states (x, y) with the following episode

L L L L L

Calculate τ(s, a) for all state-action pairs at each step

Worksheet question

Worksheet 9
CMPUT 397

March 9, 2020

1. An agent observes the following two episodes from an MDP,

S0 = 0, A0 = 1, R1 = 1, S1 = 1, A1 = 1, R2 = 1

S0 = 0, A0 = 0, R1 = 0, S1 = 0, A1 = 1, R2 = 1, S2 = 1, A2 = 1, R3 = 1

and updates its deterministic model accordingly. What would the model output for the
following queries:

(a) Model(S = 0, A = 0):

(b) Model(S = 0, A = 1):

(c) Model(S = 1, A = 0):

(d) Model(S = 1, A = 1):

Answer:

(a) Model(S = 0, A = 0): 0, 0

(b) Model(S = 0, A = 1): 1, 1

(c) Model(S = 1, A = 0): None

(d) Model(S = 1, A = 1): 1, terminal

2. An agent is in a 4-state MDP, S = {1, 2, 3, 4}, where each state has two actions A = {1, 2}.
Assume the agent saw the following trajectory,

S0 = 1, A0 = 2, R1 = �1,

S1 = 1, A1 = 1, R2 = 1,

S2 = 2, A2 = 2, R3 = �1,

S3 = 2, A3 = 1, R4 = 1,

S4 = 3, A4 = 1, R5 = 100,

S5 = 4

and uses Tabular Dyna-Q with 5 planning steps for each interaction with the environment.

(a) Once the agent sees S5, how many Q-learning updates has it done with real experience?
How many updates has it done with simulated experience?

(b) Which of the following are possible (or not possible) simulated transitions {S,A,R, S 0}
given the above observed trajectory with a deterministic model and random search control?

i. {S = 1, A = 1, R = 1, S 0 = 2}
ii. {S = 2, A = 1, R = �1, S 0 = 3}
iii. {S = 2, A = 2, R = �1, S 0 = 2}

1

Worksheet question

Worksheet 9
CMPUT 397

March 9, 2020

1. An agent observes the following two episodes from an MDP,

S0 = 0, A0 = 1, R1 = 1, S1 = 1, A1 = 1, R2 = 1

S0 = 0, A0 = 0, R1 = 0, S1 = 0, A1 = 1, R2 = 1, S2 = 1, A2 = 1, R3 = 1

and updates its deterministic model accordingly. What would the model output for the
following queries:

(a) Model(S = 0, A = 0):

(b) Model(S = 0, A = 1):

(c) Model(S = 1, A = 0):

(d) Model(S = 1, A = 1):

Answer:

(a) Model(S = 0, A = 0): 0, 0

(b) Model(S = 0, A = 1): 1, 1

(c) Model(S = 1, A = 0): None

(d) Model(S = 1, A = 1): 1, terminal

2. An agent is in a 4-state MDP, S = {1, 2, 3, 4}, where each state has two actions A = {1, 2}.
Assume the agent saw the following trajectory,

S0 = 1, A0 = 2, R1 = �1,

S1 = 1, A1 = 1, R2 = 1,

S2 = 2, A2 = 2, R3 = �1,

S3 = 2, A3 = 1, R4 = 1,

S4 = 3, A4 = 1, R5 = 100,

S5 = 4

and uses Tabular Dyna-Q with 5 planning steps for each interaction with the environment.

(a) Once the agent sees S5, how many Q-learning updates has it done with real experience?
How many updates has it done with simulated experience?

(b) Which of the following are possible (or not possible) simulated transitions {S,A,R, S 0}
given the above observed trajectory with a deterministic model and random search control?

i. {S = 1, A = 1, R = 1, S 0 = 2}
ii. {S = 2, A = 1, R = �1, S 0 = 3}
iii. {S = 2, A = 2, R = �1, S 0 = 2}

1

Worksheet question
Worksheet 9

CMPUT 397
March 9, 2020

3. Modify the Tabular Dyna-Q algorithm so that it uses Expected Sarsa instead of Q-learning.
Assume that the target policy is ✏-greedy. What should we call this algorithm?

164 Chapter 8: Planning and Learning with Tabular Methods

n iterations (Steps 1–3) of the Q-planning algorithm. In the pseudocode algorithm for
Dyna-Q in the box below, Model(s, a) denotes the contents of the (predicted next state
and reward) for state–action pair (s, a). Direct reinforcement learning, model-learning,
and planning are implemented by steps (d), (e), and (f), respectively. If (e) and (f) were
omitted, the remaining algorithm would be one-step tabular Q-learning.

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all s � S and a � A(s)
Loop forever:

(a) S current (nonterminal) state
(b) A �-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S�

(d) Q(S, A) Q(S, A) + �
�
R + � maxa Q(S�, a)�Q(S, A)

�

(e) Model(S, A) R, S� (assuming deterministic environment)
(f) Loop repeat n times:

S random previously observed state
A random action previously taken in S
R, S� Model(S, A)
Q(S, A) Q(S, A) + �

�
R + � maxa Q(S�, a)�Q(S, A)

�

Example 8.1: Dyna Maze Consider the simple maze shown inset in Figure 8.2. In
each of the 47 states there are four actions, up, down, right, and left, which take the
agent deterministically to the corresponding neighboring states, except when movement
is blocked by an obstacle or the edge of the maze, in which case the agent remains where
it is. Reward is zero on all transitions, except those into the goal state, on which it is +1.
After reaching the goal state (G), the agent returns to the start state (S) to begin a new
episode. This is a discounted, episodic task with � = 0.95.

The main part of Figure 8.2 shows average learning curves from an experiment in
which Dyna-Q agents were applied to the maze task. The initial action values were zero,
the step-size parameter was � = 0.1, and the exploration parameter was � = 0.1. When
selecting greedily among actions, ties were broken randomly. The agents varied in the
number of planning steps, n, they performed per real step. For each n, the curves show
the number of steps taken by the agent to reach the goal in each episode, averaged over 30
repetitions of the experiment. In each repetition, the initial seed for the random number
generator was held constant across algorithms. Because of this, the first episode was
exactly the same (about 1700 steps) for all values of n, and its data are not shown in
the figure. After the first episode, performance improved for all values of n, but much
more rapidly for larger values. Recall that the n = 0 agent is a nonplanning agent, using
only direct reinforcement learning (one-step tabular Q-learning). This was by far the
slowest agent on this problem, despite the fact that the parameter values (� and �) were
optimized for it. The nonplanning agent took about 25 episodes to reach (�-)optimal
performance, whereas the n = 5 agent took about five episodes, and the n = 50 agent
took only three episodes.

Answer:

I’m not sure what we should call this algorithm, maybe Dyna-Expected-Sarsa.

To make the algorithm use Expected Sarsa instead of Q-learning, we should change the
updates made both using real experience and using simulated experience as shown below:

Q(S,A) Q(S,A) + ↵[R + �
X

a

⇡(a|S 0)Q(S 0, a)�Q(S,A)]

4. Consider an MDP with two states {1, 2} and two possible actions: {stay, switch}. The state
transitions are deterministic, the state does not change if the action is “stay” and the state
switches if the action is “switch”. However, rewards are randomly distributed:

P (R |S = 1, A = stay) =

(
0 w.p. 0.4

1 w.p. 0.6
, P (R |S = 1, A = switch) =

(
0 w.p. 0.5

1 w.p. 0.5

P (R |S = 2, A = stay) =

(
0 w.p. 0.6

1 w.p. 0.4
, P (R |S = 2, A = switch) =

(
0 w.p. 0.5

1 w.p. 0.5

(a) How might you learn the reward model? Hint: think about how probabilities are estimated.
For example, what if you were to estimate the probability of a coin landing on heads? If
you observed 10 coin flips with 8 heads and 2 tails, then you can estimate the probabilities
by counting: p(heads) = 8

10 = 0.8 and p(tails) = 2
10 = 0.2.

(b) Modify the tabular Dyna-Q algorithm to handle this MDP with stochastic rewards.

Answer:

(a) We can estimate P (R|S = s, A = a) by keeping counts of each event.

3

Worksheet question
Worksheet 9

CMPUT 397
March 9, 2020

6. (Exercise 8.2 S&B) Why did the Dyna agent with exploration bonus, Dyna-Q+, perform
better in the first phase as well as in the second phase of the blocking experiment in Figure
8.4?

8.3. When the Model Is Wrong 167

Cumulative
reward

0 1000 2000 3000

Time steps

150

0

Dyna-Q+

S

G G

S

Dyna-Q

Figure 8.4: Average performance of Dyna agents on a blocking task. The left environment
was used for the first 1000 steps, the right environment for the rest. Dyna-Q+ is Dyna-Q with
an exploration bonus that encourages exploration.

Cumulative
reward

S

G G

S

0 3000 6000
Time steps

400

0

Dyna-Q+
Dyna-Q

Figure 8.5: Average performance of Dyna agents on
a shortcut task. The left environment was used for the
first 3000 steps, the right environment for the rest.

Example 8.3: Shortcut Maze
The problem caused by this kind of
environmental change is illustrated
by the maze example shown in Fig-
ure 8.5. Initially, the optimal path is
to go around the left side of the bar-
rier (upper left). After 3000 steps,
however, a shorter path is opened up
along the right side, without disturb-
ing the longer path (upper right).
The graph shows that the regular
Dyna-Q agent never switched to the
shortcut. In fact, it never realized
that it existed. Its model said that
there was no shortcut, so the more it
planned, the less likely it was to step
to the right and discover it. Even
with an �-greedy policy, it is very
unlikely that an agent will take so
many exploratory actions as to dis-
cover the shortcut.

The general problem here is another version of the conflict between exploration and
exploitation. In a planning context, exploration means trying actions that improve the
model, whereas exploitation means behaving in the optimal way given the current model.

Answer: In the maze, the agent receives a non-zero reward only when visiting the goal
state. Therefore, the state-action values are pretty similar for many state-action pairs in the
beginning. This causes the Dyna-Q algorithm to have a random policy in the beginning.The
Dyna-Q+ algorithm, however, has an exploration bonus encouraging the agent to visit the
less visited state-action pairs. Visiting the less explored part of the maze increases the
chance of the agent to stumble upon the goal state (or states with non-zero values) compared
to the random policy initially used by Dyna-Q.

7. (Exercise 8.3 S&B) Challenge Question: Careful inspection of Figure 8.5 reveals that
the di↵erence between Dyna-Q+ and Dyna-Q narrowed slightly over the first part of the
experiment. What is the reason for this?

Answer:

After finding the optimal path to the goal, the exploratory policy of Dyna-Q+ is no more
beneficial and results in Dyna-Q outperforming Dyna-Q+ since Dyna-Q+ sometimes do not
follow the optimal path.

6

Worksheet question

Worksheet 9
CMPUT 397

March 9, 2020

6. (Exercise 8.2 S&B) Why did the Dyna agent with exploration bonus, Dyna-Q+, perform
better in the first phase as well as in the second phase of the blocking experiment in Figure
8.4?

8.3. When the Model Is Wrong 167

Cumulative
reward

0 1000 2000 3000

Time steps

150

0

Dyna-Q+

S

G G

S

Dyna-Q

Figure 8.4: Average performance of Dyna agents on a blocking task. The left environment
was used for the first 1000 steps, the right environment for the rest. Dyna-Q+ is Dyna-Q with
an exploration bonus that encourages exploration.

Cumulative
reward

S

G G

S

0 3000 6000
Time steps

400

0

Dyna-Q+
Dyna-Q

Figure 8.5: Average performance of Dyna agents on
a shortcut task. The left environment was used for the
first 3000 steps, the right environment for the rest.

Example 8.3: Shortcut Maze
The problem caused by this kind of
environmental change is illustrated
by the maze example shown in Fig-
ure 8.5. Initially, the optimal path is
to go around the left side of the bar-
rier (upper left). After 3000 steps,
however, a shorter path is opened up
along the right side, without disturb-
ing the longer path (upper right).
The graph shows that the regular
Dyna-Q agent never switched to the
shortcut. In fact, it never realized
that it existed. Its model said that
there was no shortcut, so the more it
planned, the less likely it was to step
to the right and discover it. Even
with an �-greedy policy, it is very
unlikely that an agent will take so
many exploratory actions as to dis-
cover the shortcut.

The general problem here is another version of the conflict between exploration and
exploitation. In a planning context, exploration means trying actions that improve the
model, whereas exploitation means behaving in the optimal way given the current model.

Answer: In the maze, the agent receives a non-zero reward only when visiting the goal
state. Therefore, the state-action values are pretty similar for many state-action pairs in the
beginning. This causes the Dyna-Q algorithm to have a random policy in the beginning.The
Dyna-Q+ algorithm, however, has an exploration bonus encouraging the agent to visit the
less visited state-action pairs. Visiting the less explored part of the maze increases the
chance of the agent to stumble upon the goal state (or states with non-zero values) compared
to the random policy initially used by Dyna-Q.

7. (Exercise 8.3 S&B) Challenge Question: Careful inspection of Figure 8.5 reveals that
the di↵erence between Dyna-Q+ and Dyna-Q narrowed slightly over the first part of the
experiment. What is the reason for this?

Answer:

After finding the optimal path to the goal, the exploratory policy of Dyna-Q+ is no more
beneficial and results in Dyna-Q outperforming Dyna-Q+ since Dyna-Q+ sometimes do not
follow the optimal path.

6

Worksheet 9
CMPUT 397

March 9, 2020

8.3. When the Model Is Wrong 167

Cumulative
reward

0 1000 2000 3000

Time steps

150

0

Dyna-Q+

S

G G

S

Dyna-Q

Figure 8.4: Average performance of Dyna agents on a blocking task. The left environment
was used for the first 1000 steps, the right environment for the rest. Dyna-Q+ is Dyna-Q with
an exploration bonus that encourages exploration.

Cumulative
reward

S

G G

S

0 3000 6000
Time steps

400

0

Dyna-Q+
Dyna-Q

Figure 8.5: Average performance of Dyna agents on
a shortcut task. The left environment was used for the
first 3000 steps, the right environment for the rest.

Example 8.3: Shortcut Maze
The problem caused by this kind of
environmental change is illustrated
by the maze example shown in Fig-
ure 8.5. Initially, the optimal path is
to go around the left side of the bar-
rier (upper left). After 3000 steps,
however, a shorter path is opened up
along the right side, without disturb-
ing the longer path (upper right).
The graph shows that the regular
Dyna-Q agent never switched to the
shortcut. In fact, it never realized
that it existed. Its model said that
there was no shortcut, so the more it
planned, the less likely it was to step
to the right and discover it. Even
with an �-greedy policy, it is very
unlikely that an agent will take so
many exploratory actions as to dis-
cover the shortcut.

The general problem here is another version of the conflict between exploration and
exploitation. In a planning context, exploration means trying actions that improve the
model, whereas exploitation means behaving in the optimal way given the current model.

7

