Benchmarking Reinforcement Learning Algorithms
on Real-World Robots

A. Rupam Mahmood Dmytro Korenkevych
rupam@kindred.ai dmytro.korenkevych@kindred.ai
Gautham Vasan William Ma James Bergstra
gautham.vasan@kindred.ai william.ma@kindred.ai james@kindred.ai
Abstract:

Through many recent successes in simulation, model-free reinforcement learning
has emerged as a promising approach to solving continuous control robotic tasks.
The research community is now able to reproduce, analyze and build quickly on
these results due to open source implementations of learning algorithms and sim-
ulated benchmark tasks. To carry forward these successes to real-world applica-
tions, it is crucial to withhold utilizing the unique advantages of simulations that
do not transfer to the real world and experiment directly with physical robots.
However, reinforcement learning research with physical robots faces substantial
resistance due to the lack of benchmark tasks and supporting source code. In this
work, we introduce several reinforcement learning tasks with multiple commer-
cially available robots that present varying levels of learning difficulty, setup, and
repeatability. On these tasks, we test the learning performance of off-the-shelf im-
plementations of four reinforcement learning algorithms and analyze sensitivity
to their hyper-parameters to determine their readiness for applications in various
real-world tasks. Our results show that with a careful setup of the task interface
and computations, some of these implementations can be readily applicable to
physical robots. We find that state-of-the-art learning algorithms are highly sensi-
tive to their hyper-parameters and their relative ordering does not transfer across
tasks, indicating the necessity of re-tuning them for each task for best perfor-
mance. On the other hand, the best hyper-parameter configuration from one task
may often result in effective learning on held-out tasks even with different robots,
providing a reasonable default. We make the benchmark tasks publicly available
to enhance reproducibility in real-world reinforcement learning!.

Keywords: CORL, Robots, Reinforcement learning, Benchmarking

1 Introduction

In recent years, policy learning algorithms such as trust region policy optimization (TRPO, Schul-
man et al. 2015), proximal policy optimization (PPO, Schulman et al. 2016), and deep deterministic
policy gradient (DDPG, Lillicrap et al. 2015) methods have gained popularity due to their success
in various simulated robotic tasks (Duan et al. 2016). A large body of works has been built on
these algorithms to address different challenges in reinforcement learning including policy learning
(Haarnoja et al. 2017), hierarchical learning (Klissarov et al. 2017), transfer learning (Wulfmeier,
Posner & Abbeel 2017), and emergence of complex behavior (Heess et al. 2017). Deep learning
software such as Theano and Tensorflow as well as the availability of source code of learning algo-
rithms (e.g., Duan et al. 2016, Dhariwal et al. 2017) and benchmark simulated environments (e.g.,
Brockman et al. 2016, Machado et al. 2018, Tassa et al. 2018) contributed to this advancement.

It is natural to expect that successes in simulations would inspire similar engagement within the
reinforcement learning community toward policy learning with physical robots. But this engage-

!Source code for all tasks available at https://github.com/kindredresearch/SenseAct

2nd Conference on Robot Learning (CoRL 2018), Zrich, Switzerland.

https://github.com/kindredresearch/SenseAct

URS5 robotic arm Dynamixel MX-64AT actuator Create 2 mobile robot base

Figure 1: The robots used in this work: (/eff) Universal Robotics URS collaborative arms, (mid-
dle) Robotis MX-64AT Dynamixel actuators, and (right) iRobot Create2 mobile robot bases.

ment so far has been limited. Some notable works show success when the learning algorithms are
supported with one or more of (a) sufficient state information or auxiliary task-specific steps and
knowledge (e.g. Levine et al. 2016, Riedmiller et al. 2018), (b) preparation in simulation (e.g. Rusu
et al. 2017) (c) collaborative learning (e.g. Yahya et al. 2017), and (d) learning from demonstrations
(e.g. Hester et al. 2017). However, reinforcement learning research with real-world robots is yet
to fully embrace and engage the purest and simplest form of the reinforcement learning problem
statement—an agent maximizing its rewards by learning from its first-hand experience of the world.
This lack of engagement indicates the difficulties in carrying forward the successes and enthusiasm
found in simulation-based works to the real world. Due to the lack of benchmark tasks, it is hard to
analyze these difficulties and address them as a community.

Mahmood et al. (2018) recently brought to attention some of the difficulties of real-world robot
learning and showed that learning performance can be highly sensitive to different elements of the
task setup such as the action space, the action cycle time defined by the time between two subsequent
actions, and system delays (also see Riedmiller 2012). Therefore, reproducing and utilizing existing
results can be hard when the details of these task setup elements are omitted. Moreover, without
careful task setups, learning with physical robots can be insurmountably difficult.

To study and alleviate these difficulties, we introduce six reinforcement learning tasks based on three
commercially available robots. Most of these tasks require no additional hardware installation apart
from the basic robot setup. On these tasks, we compare and benchmark four reinforcement learning
algorithms for continuous control: TRPO, PPO, DDPG, and Soft Q-learning (Haarnoja et al. 2017).
The main contributions of this work are 1) introducing benchmark tasks for physical robots to share
across the community, 2) setting up the tasks to be conducive to learning, and 3) providing the first
extensive empirical study of multiple policy learning algorithms on multiple physical robots.

2 Robots

We use three commercially available robots (see Figure 1) as a basis for defining learning tasks.

URS: The URS, shown in Figure 1 (/eft) is a collaborative industrial arm with six joints produced
by Universal Robots. The sensory packets from URS include angles, velocities, target accelerations,
and currents for each joint. The control interface offers low-level position and velocity control
commands. We use URS5 to develop two tasks called UR-Reacher-2 and UR-Reacher-6 based on the
tasks developed by Mahmood et al. (2018).

Dynamixel MX-64AT: The Dynamixel (DXL) series of programmable Direct-Current actuators,
manufactured by Robotis, are popular for custom robots ranging from robot arms to humanoids. We
use single DXL MX-64AT actuators, shown in Figure 1 (middle), which complies with high torque
and load requirements. The MX series actuators are controlled by digital packets via a half duplex
asynchronous serial communication protocol, that is, we can read and write to the motor but not
simultaneously. The protocol allows a control computer to send position, velocity or current control
commands (referred to as torque control in the manual) to the actuator as well as poll sensorimotor
information including position, velocity, temperature, current and load. We develop two tasks based
on this actuator, which we call DXL-Reacher and DXL-Tracker.

Create 2: The Create 2, shown in Figure 1 (right), is a hobbyist version of iRobot’s Roomba vacuum
robot. The Create 2 has two actuated wheels and many sensors including six front-facing infrared
wall sensors, charging sensor, one omni-directional and two directional infrared sensors for docking,
two physical bump sensors, and a directed distance sensor for the forward direction. The software
interface allows the control computer to access sensory packets in a streaming mode as well as send
to the robot target speeds (mm/s) for its two wheels. We develop two tasks with it, called Create-
Mover and Create-Docker.

Appendix A.1 contains additional details of the hardware setups.

3 Tasks

In a reinforcement learning (RL) task (Sutton & Barto 1998), an agent interacts with its environment
at discrete time steps, where at each step ¢, the environment provides the agent its state information

St € S and a scalar reward signal R; € R. The agent uses a stochastic policy 7 with a probability

o lof . .
distribution 7(a|s) == Pr{A; = a|S; = s} to select an action A; € A. In response, the environ-

ment transitions to a new state Sy 1 and produces a new reward R, at the next time step t+1 using

a transition probability distribution: p(s’,7|s, a) Qef Pr{Sit1 =5, Riy1 =7|S; = 5, Ay = a}.
The goal of the agent is typically to find a policy that maximizes the expected return defined as the

def , . .
future accumulated rewards G, == Y ores v*~t Ry 1, where v € [0, 1] is a discount factor. In prac-

tice, the agent observes the environment’s state partially through a real-valued observation vector oy
instead of receiving the state information fully.

UR-Reacher-2: We use the Reacher task with URS developed by Mahmood et al. (2018), which
is designed analogously to OpenAI-Gym Reacher (Brockman et al. 2016). We modify the reward
function and call the task UR-Reacher-2. In Gym Reacher, the agent’s objective is to reach arbitrary
target positions by exercising low-level control over a two-joint robotic arm. In UR-Reacher-2, we
actuate the second and the third joints from the base by sending angular speeds between [—0.3, +0.3]
rad/s. The observation vector consists of joint angles, joint velocities, the previous action, and the
vector difference between the target and the fingertip coordinates. The reward function is defined as:
Ry = —d; + exp(—100d7), where d, is the Euclidean distance between the target and the fingertip
positions. The second term of the reward function, which we call the precision reward, incentivizes
the algorithm to learn to get to the target with a high precision. We defined episodes to be 4 seconds
long to allow adequate exploration. At each episode, the target position is generated randomly within
a 0.7m x 0.5m boundary, while the arm always starts from the middle of the boundary.

UR-Reacher-6: The second task with URS, which we call UR-Reacher-6, is analogous to UR-
Reacher-2 with the exceptions that all six joints are actuated and the target is drawn from a 0.7m x
0.5m x 0.4m 3D space. The higher dimensionality of the action and observation spaces and physical
limitations of reaching locations from various configurations of the arm joints in 3D space result in
a much more complex policy space and substantially increase the learning problem difficulty.

DXL-Reacher: We design a Reacher task similar to UR-Reacher-2 with current control of the DXL
actuator, which we call DXL-Reacher. The action space is one-dimensional current control signals
between [—100,100] mA, making the task simpler than UR-Reacher-2. The reward function is
defined as: R; = —d;. The observation vector includes the actuator position (in radians), moving
speed, target position, and the previous action. Each episode is 2 seconds long to allow adequate
time for reaching distant target positions. At each episode, the target position is chosen randomly
within a certain boundary of angular positions, and the actuator starts from the center of it.

DXL-Tracker: We develop a second task using the DXL actuator, which we call DXL-Tracker. The
objective here is to precisely track a moving target position with current control signals between
[—50, 50] mA. The observation vector includes the actuator position (in radians), moving speed,
current target position, target position from 50 milliseconds in the past and the previous action. The
reward function is same as that of DXL-Reacher. Each episode is 4 seconds long to allow adequate
time to catch up with the target and subsequently track it. At each episode, the starting position of
the target is chosen uniformly randomly from a certain range, and the actuator starts from the center
of that range. In addition, we also randomly choose the direction of the moving target. The speed of
the target is set in such a way that the target always arrives at a certain fixed position at the end of
the episode. Thus, the speed is different for different episodes.

Create-Mover: We develop a task with Create 2 where the agent needs to move the robot forward
as fast as possible within an enclosed arena. We call it Create-Mover. A 3ft x 2.5 ft arena is built
using white shelving boards for the walls and a white hardboard for the floor. The action space is
[—150mm /s, 150mm /s]? for actuating the two wheels with speed control. The observation vector
is composed of 6 wall-sensors values and the previous action. For the wall sensors, we always take
the latest values received within the action cycle and use Equation 1 by (Benet et al. 2002) to convert
the incoming signals to approximate distances. The reward function is the summation of the directed
distance values over 10 most recent sensory packets. An episode is 90 seconds long but ends earlier
if the agent triggers one of its bump sensors. When an episode terminates, the position of the robot is
reset by moving backward to avoid bumping into the wall immediately. We use two Create 2 robots
and two identical arenas for our experiments. Among the two robots, one of them has two faulty
wall sensors always receiving value zero, with four other sensors oriented symmetrically. To make
comparisons fair, each algorithm was run using both robots the same number of times.

Create-Docker: In this task the objective is to dock to a charging station attached to the middle of
one of the wider walls of the Create-Mover arena. The reward function is a large positive number
for successful docking with penalty for bumping and encouragement for moving forward and facing
the charging station perpendicularly. More details of the task is provided in Appendix A.2.

All of these tasks are implemented following the computational model for real-time reinforcement
learning tasks described by Mahmood et al. (2018). We improve on that model by running environ-
ment and agent computations on two different processes, which we found to reduce execution delays
compared to the use of Python threads. The action cycle time is 150ms for Create-Mover, 45ms for
Create-Docker and 40ms for the rest of the tasks. The robot read-write cycle time is set to 8ms for
URS tasks, 10ms for DXL tasks and 15ms for Create tasks. The reward is scaled by the action cycle
time in all cases. The action space is normalized between -1 and +1 for each dimension. For the
Create tasks, all the observations are also normalized between -1 and +1.

4 Reinforcement learning algorithms

We select four continuous control policy learning algorithms. TRPO, PPO and DDPG are among the
most popular of their kind. On the other hand, Soft-Q is a new algorithm with promising results. We
use the OpenAl Baselines implementations for TRPO, and PPO, Rllab implementation for DDPG,
and the implementation of Soft Q-learning by the original authors.

Trust region policy optimization (TRPO): TRPO (Schulman et al. 2015) is a policy optimization
algorithm that constrains the change in the policy at each learning update. The policy is optimized
by iteratively solving the following constrained optimization problem:

maxiemize ES@Nﬂ'eom [7‘9 (CL|S)A90M (87 a)] » St ES-,GNWGOM [DKL(T‘—Q('|8) ||7T001d (|S))] <9,

where Ay, is the advantage function, r¢(als) = ﬁ:“mi)
old

to the policy probability used to generate data, Dy; is a Kullback-Leibler divergence, and ¢ is a
“step-size” parameter. TRPO uses the conjugate-gradient algorithm to solve the above problem.

is the ratio of a target policy probability

Proximal policy optimization (PPO): PPO (Schulman et al. 2016) attempts to control the policy
change during learning updates by replacing the KL-divergence constraint of TPRO in the optimiza-
tion problem with a penalty term realized by a clipping in the objective function:

LgLIP = ES7QN7TQOM [min(rg(als)Ag,,(a, s),clip(ro(als), 1 — e, 1+ ¢)Ag,,(s,a))] ,

where Ay, is the advantage function, and ¢ is a parameter, usually on the order of 0.1. The opti-
mization is done by running several epochs of stochastic gradient ascent at each update.

Soft Q-learning (Soft-Q): Soft-Q (Haarnoja et al. 2017) defines a policy as an energy based prob-
ability distribution: m(a|s) o exp(—&(a, s)), where the energy function £ corresponds to a “soft”
action-value function, obtained by optimizing the maximum entropy objective. The soft action-value
function is represented by deep neural networks, and therefore the policy energy model can repre-
sent complex multi-modal behaviors. This model provides natural exploration mechanism without
the need to introduce artificial sources of exploration noise, such as additive Gaussian noise.

Deep deterministic policy gradient (DDPG): DDPG (Lillicrap et al. 2015) learns a deterministic
policy that maximizes the estimated action-value function by following a policy gradient:

1
Volo =+ Z VaQe(Sis@)|a=po(s;) Vora(si)

where N is the batch size. In the Rllab implementation, the exploration of DDPG is addressed by
augmenting the policy output 14 (s) with additive noise from an independent noise model.

S Experiment Protocol

We run the four learning algorithms on the six robotic tasks to investigate different characteristics
such as hyper-parameter and network initialization sensitivities within tasks, hyper-parameter con-
sistency across tasks, and overall learning effectiveness of the algorithms in all tasks.

To analyze the hyper-parameter sensitivity within tasks and consistency across tasks, we perform
a random search (Bergstra & Bengio 2012) of seven hyper-parameters of each algorithm on UR-
Reacher-2 and DXL-Reacher. For each of these hyper-parameters, we predetermine the range of
values to search and draw 30 independent hyper-parameter configurations from that range uniformly
randomly in the logarithmic scale. The ranges of hyper-parameter values we use in this experiment
are given in Appendix A.3. Each of these hyper-parameter configurations is used to run experiments
using a different random initialization of neural networks. Each algorithm is run using the same set
of hyper-parameter configurations on both tasks.

To know the statistical significance of the comparative performance of each hyper-parameter config-
uration, we need to run each of them with different randomization seeds that will determine network
initialization, random target positions, and random action selections. Instead, we run each hyper-
parameter configuration of the random search with a single randomly drawn network initialization.
To determine the effect of the network initialization, we redraw four hyper-parameter configurations
uniformly randomly from our original 30 sets. Each of these four sets was rerun with five randomly
drawn network initializations. We use the same five network initializations for all four sets of chosen
hyper-parameter values on both tasks.

To analyze the overall effectiveness of the algorithms across tasks, we choose the best-performing
hyper-parameter configurations of each algorithm from UR-Reacher-2 and use them to run experi-
ments on the four held-out tasks: UR-Reacher-6, DXL-Tracker, Create-Mover, and Create-Docker.
To understand the qualitative performance of learned policies, we also run some non-learning
scripted agents and compute their average returns using the same experimental setup we use for
the learning agents. These scripted agents are described in Appendix A.4.

Each run is 150,000 steps long or about 3 hours of wall time for UR-Reacher-2, 200,000 steps long
or about 4 hours of wall time for UR-Reacher-6, 50,000 steps long or about 45 minutes of wall time
for DXL-Reacher, 150,000 steps long or about 2 hours 15 minutes of wall time for DXL-Tracker,
40,000 steps long or about 2 hours of wall time for Create-Mover, and 300,000 steps long for Create-
Docker. All wall times include resets. The resets of Create-Docker is dependent on performance.

6 Experimental results and discussion

First, we demonstrate the reliability of the experiments by repeating some of them multiple times
with the same randomization seed using TRPO. Details are given in Appendix A.5. Figure 2 shows
the results for all tasks except Create-Docker. The variation in performance between different runs
was small and did not diverge over time except on Create-Mover, where the sequences of experience
became dissimilar over time across runs. These results are a testament to the tight control over
system delays achieved in our tasks by using the computational model of Mahmood et al. (2018).

To illustrate the sensitivity of each algorithm’s performance to their hyper-parameters, we show in
Figure 3 the performance of all algorithms on both UR-Reacher-2 (left) and DXL-Reacher (right)
using Tukey’s box plots (Tukey 1977) based on all 30 configurations. The performance of each con-
figuration was measured by averaging all episodic returns obtained throughout the learning period
during its run. For each algorithm, performance varied widely with different hyper-parameter config-
urations, ranging from learning visually-confirmed effective behavior to no learning at all. No learn-
ing occurred for several different hyper-parameter configurations. The performance of DDPG was

UR-Reacher-2 UR-Reacher-6 DXL-Reacher DXL-Tracker Create-Mover
10 4

4 runs using

°7 same seed /\J’Mr
] e Y

| 4 runs using

100 /|l o same seed
Returns _/
50
1 I -

of MY

4 runs using
same seed

4 runs using 4 runs using
same seed same seed

4 runs using
-s0 ’\/‘ a different seed -100
\l

-1004
\

L 150 4 -50 4 -50 4 L
0 30K 60K 90K 120K 150K 0 50K 100K 150K 200K 0 10K 20k 30K 40K 50K 0 30K 60K 90K 120k 150 0 10K 20k 30k 40K
20min 40min 60min 80min 100min 3Bmin 67min 100min 133min min 13min 20min 27min 33min 20min 40min 60min 80min 100m 25min S0min 75min 100min

Time steps Time steps Time steps Time steps Time steps
Agent-experience time Agent-experience time Agent-experience time Agent-experience time Agent-experience time

Figure 2: Repeatability of learning on five robotic tasks: The plots show the returns over time
of multiple learning experiments that would be identical for the same color if they had been run in
simulation. The robot hardware introduces some non-determinism, but not enough to significantly
impact repeatability in the natural ups and downs of exploration and learning, except in Create-
Mover, where the physical location of the robot can diverge over time across the runs.

the worst, having the least median performance on both tasks. The rest of the algorithms achieved
good performance with many configurations on both tasks. Among them, TRPO’s performance was
the least sensitive to hyper-parameter variations with the smallest interquartile range on both tasks.

Overall, these results show that hyper-parameter choices are important, as they may make a much
bigger difference than the choice of the algorithm. Blue crosshairs in Figure 4 show the performance
for each of the 30 hyper-parameter configurations of all four algorithms in the descending order,
also shown in Appendix A.6 for easier comparison. The values of all configurations, distributions
of individual hyper-parameters and their correlations with performance are given in Appendix A.7.

The box plots in Figure 4 show the effect of variations in network initialization with four randomly
chosen hyper-parameter configurations. Except in one case of DDPG, the interquartile ranges of
performance due to variations in network initializations were smaller than those due to variations in
hyper-parameter choices shown in Figure 3. Except for TRPO on UR-Reacher-2, DDPG on DXL-
Reacher and Soft-Q on both tasks, the medians of performance also retained the relative rank order
of the configurations in the original experiment with single network initializations.

We show in Figure 5 how each hyper-parameter configuration ranks on both tasks according to aver-
age returns. Each plot corresponds to an algorithm and contains two columns of colored dots, each
of which represents one of the 30 randomly chosen hyper-parameter configurations. The gray lines
connect identical hyper-parameter configurations on both tasks. The correlations of performance
between the tasks with corresponding p-values are given above the plots. The correlations were
positive for all algorithms, and significantly large for PPO, Soft-Q and DDPG. This result indicates
that although hyper-parameter optimization is likely necessary for best performance on a new task,
a good configuration based on one task can still provide a good baseline performance for another.

Figure 6 shows the means of multiple learning curves together with their standard errors for different
learning algorithms on different tasks, except the bottom right plot, which shows two independent

UR-Reacher-2 DXL-Reacher

TRPO Soft-Q

200 PPO Soft-Q -15 PPO

TRPO
DDPG

150 T T 20 T %
100 -2
-30
Average >0 DDPG -35 ° %
Returns ¢ ° 2
—100 =
o
-150 -55

Figure 3: The effect of hyper-parameter choices in two robotic tasks: The plot illustrates
the variation in performance due to hyper-parameter choices using boxplots based on 30 randomly
drawn hyper-parameter configurations of each algorithm on UR-Reacher-2 and DXL-Reacher tasks.
Hyperparameter choices had a large impact on the quality of learned policies.

UR-Reacher-2

200 4 TRPO 200, PPO 200, Soft-Q 200 DDPG
100 s+ 1004 [e, - 1001 S, © 100
Average T Ty, =, e
Returns ° Ty *+ o
0 0 -, 0 04,
~100 -100 , v, -1004 -1004 e R
DXL-Reacher
-10 -101 -101 -101
S _TRPO . PPO o Soft-Q DDPG
201 % oS —204[{0 ooooo ? ’1‘ -204 T, =201
Average _ | o s, L T L Lt -,
9°_30{ T, 30 g -30 Hooo e -30
Returns + e, = ﬁ
—40 ~40 * —40 —40 B e U'
.
~50 -50 -50 ~50 e

Hyper-parameter configurations
ordered according to performance

Hyper-parameter configurations

ordered according to performance

Hyper-parameter configurations
ordered according to performance

Hyper-parameter configurations

ordered according to performance

Figure 4: The effect of random network initializations on DXL-Reacher: Each blue cross rep-
resents a single run with a unique hyper-parameter choice. They are sorted by performance. To
quantify the influence of network initialization, we re-ran some of the experiments but varied the
initialization. The overall effect of network initialization, shown in Tukey’s box plots for four ran-
domly chosen hyper-parameter values, was smaller than that of the choice of the hyper-parameters.

learning curves of TRPO on Create-Docker. The average returns and standard errors of scripted
agents are also shown for each task. For the mean curves, we used four independent runs of each
algorithm on Create-Mover, and five runs on the rest. DDPG performed poorly on all URS and
DXL tasks. We did not run it on the two Create tasks. The rest of the algorithms showed learning
improvements on all tasks they were run. Among these algorithms, the final performance of TRPO
was never substantially worse compared to the best in each task. Soft-Q had the fastest learning rate
on all URS and DXL tasks. On Create-Mover, TRPO, PPO and Soft-Q learned an effective forward-
moving behavior of the robot, which turned as it approached the wall, as shown in the companion
video?. On Create-Docker, TRPO learned to dock successfully quite often although the movement
was not smooth. Overall, RL solutions were outperformed by scripted solutions, by a large margin
in some tasks, where such solutions were well established or easy to script. But in Create-Docker
where a scripted solution is not obvious or easy, RL solutions appeared more competitive.

Working with real-world systems did create some challenges. Soft-Q on DXL tasks for many of its
hyper-parameter configurations resulted in frequent overheating and failed during overnight exper-
iments due to more-aggressive exploration. We could not run un-attended experiments with Create
2 when the robots were tethered to stationary external computers as their cables needed periodic
untangling. We were able to overcome this problem by using an on-board external computer, which
we used for one of the two Create-Docker runs. Two wall sensors of one of the Create 2s were
faulty; surprisingly, learning performance did not appear to be affected, possibly due to four other
symmetrically oriented wall sensors being available. Of all three robots, we were most pleased with
our experience with URS5, which we were able to use constantly for days without interventions.

2 A companion video is available at https://youtu.be/ovDfhv;jpQds

TRPO
Correlation 0.35, p=0.057

PPO

Correlation 0.52, p=0.003
Bestd

Soft-Q
Correlation 0.48, p=0.008

DDPG

Correlation 0.46, p=0.011

Best Best ¢

Best ¢
& <
S E
i i i
e
S

Normalized
Average
Returns i

b
: Worst 14

UR DXL

i
; Worst ¥
UR DXL

Worst 5
DXL

+ Worst E
UR DXL

UR

Figure 5: Hyper-parameter consistency between two robotic tasks: Each blue dot represents a
single experiment on DXL-Reacher and each orange dot represents an experiment on UR-Reacher-
2. The gray lines connect experiments with identical hyperparameter choices. Although the order-
ings of hyper-parameter configurations by performance were not consistent, all four algorithms had
hyper-parameter consistency between the tasks, evident by the correlation of performance shown
above each plot, which varied from weakly positive to moderately positive relationships.

https://youtu.be/ovDfhvjpQd8

UR-Reacher-2 UR-Reacher-6 DXL-Reacher
scripted agent: 282.42 + 9.54

300 A

scripted agent TRPO

=10 q"scripted agent PPO

200 -
Average
Returns 100

T T T T 1 T T T 1 T T T
0 30K 60K 90K 120K 150K 0 50K 100K 150K 200K 0 10K 20K 30K 40K 50K

20min 40min 60min 80min 100min 33min 67min 100min 133min 7min 13min 20min 27min 33min
DXL-Tracker Create-Mover Create-Docker
0 - 3500 -
1400
X 2 runs
—10 -.Soft-Q 1200 4 3000 o scripted
scripted agent of TRPO
204 scripted agent 1000 4 Soft-Q 2500 - ?qem
Average -30 TRPO 800 2000
Returns 4 PPO
—40 600 1500 4
_50 41 400 - 1000
oo DDPG 200 4 500 4
04 = TRPO 04
-70 T T T T 1 T T T 1
0 30K 60K 90K 120K 150K [10K 20K 30K 40K 0 OK 1DDK 150K 200K ZSOK 300K
20min 40min 60min 80min 100min 25min 50min 75min 100min 0.6h 12h 1.9h 25h 3.1h 3.8h
Time steps Time steps Time steps
Agent-experience time Agent-experience time Agent-experience time

Figure 6: Learning performance of different algorithms on all six tasks: We used the best
hyper-parameters based on UR-Reacher-2. TRPO, PPO and Soft-Q learned effectively, with Soft-Q
being the fastest learner and TRPO achieving near-best final learning performance in all tasks.

Our experiments also revealed some limitations of the learning algorithms and their implementa-
tions, such as the sequential computations of the agent’s learning updates and forward policy passes.
Learning updates of these algorithms are expensive, and our choice of moderately large action cycle
times minimized the number of samples affected by these sequential learning updates. However,
to learn finer policies with faster action cycle times, moving toward efficient ordering of compu-
tations (Travnik et al. 2018, Mahmood et al. 2018) together with inexpensive incremental updates
(Mahmood 2017) or asynchronous off-policy updates (Gu et al. 2017) would be essential.

7 Conclusions

In this work, we provided the first extensive experimental study of multiple policy learning algo-
rithms, namely TRPO, PPO, DDPG, and Soft-Q on multiple commercially-available physical robots.
We found that the performance of all algorithms was highly sensitive to their hyper-parameter values,
requiring retuning on new tasks for the best performance. Nevertheless, some algorithms achieved
effective learning performance across tasks for a wide range of hyper-parameter values. This effec-
tiveness indicates the reliability of our task setups as well as the applicability of these algorithms
and implementations in diverse physical environments. Benchmarking more learning algorithms on
these tasks as well as upgrading the existing algorithms to allow higher sample efficiency and faster
action cycle times are promising directions for future work.

We ran more than 450 independent experiments which took over 950 hours of robot usage in total.
Most of the experiments were highly repeatable, and many of them resulted in effective learning
performance. This study strongly indicates the viability of reinforcement learning research exten-
sively based on real-world experiments, which is essential to understand the difficulties of learning
with physical robots and mitigate them to achieve fast and reliable learning performance in dynamic
environments. The benchmark tasks and the supporting source code enable the necessary steps for
such understanding and easy adoption of physical robots in reinforcement learning research.

Acknowledgements

We thank Colin Cooke, Francois Hogan, and Daniel Snider for valuable discussion, and Yifei Cheng
and Scott Purdy for helping us build the arena for Create 2. Colin Cooke also helped us with the
on-board computer setup for one of the two Create-Docker runs.

References

Benet, G., Blanes, F., Simd, J. E., Pérez, P. (2002). Using infrared sensors for distance measurement
in mobile robots. Robotics and autonomous systems 40(4), 255-266.

Bergstra, J., Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Ma-
chine Learning Research, pp: 281-305.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W. (2016).
OpenAl Gym. arXiv preprint arXiv:1606.01540.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S.,
Wu, Y. (2017). OpenAl Baselines, https://github.com/openai/baselines.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P. (2016). Benchmarking deep rein-
forcement learning for continuous control. In Proceedings of the 33rd International Conference on
Machine Learning, pp: 1329-1338.

Gu, S., Holly, E., Lillicrap, T., Levine, S. (2017). Deep reinforcement learning for robotic manip-
ulation with asynchronous off-policy updates. In IEEE International Conference on Robotics and
Automation, pp:3389-3396.

Haarnoja, T., Tang, H., Abbeel, P., Levine, S. (2017). Reinforcement learning with deep energy-
based policies. arXiv preprint arXiv:1702.08165.

Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Silver, D. (2017). Emergence of
locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286.

Henderson, P, Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D. (2017). Deep reinforcement
learning that matters. arXiv preprint arXiv:1709.06560.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan, J.,
Sendonaris, A., Dulac-Arnold, G. and Osband, 1., (2017). Deep Q-learning from demonstrations.
arXiv preprint arXiv:1704.03732.

Klissarov, M., Bacon, P. L., Harb, J., Precup, D. (2017). Learnings Options End-to-End for Contin-
uous Action Tasks. arXiv preprint arXiv:1712.00004.

Levine, S., Finn, C., Darrell, T., Abbeel, P. (2016). End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research 17(1): 1334-1373.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. and Wierstra, D.
(2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., Bowling, M. (2018).
Revisiting the arcade learning environment: Evaluation protocols and ppen problems for general
agents. Journal of Artificial Intelligence Research 61: 523-562.

Mahmood, A. R. (2017). Incremental Off-policy Reinforcement Learning Algorithms. PhD thesis,
Department of Computing Science, University of Alberta, Edmonton, AB T6G 2ES.

Mahmood, A. R., Korenkevych, D., Komer, B. J., Bergstra, J. (2018). Setting up a Reinforcement
Learning Task with a Real-World Robot. In IEEE/RSJ International Conference on Intelligent
Robots and Systems.

Riedmiller, M. (2012). 10 steps and some tricks to set up neural reinforcement controllers. In Neural
networks: tricks of the trade, pp. 735-757. Springer, Berlin, Heidelberg.

Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J., Van de Wiele, T., Mnih, V.,
Heess, N. and Springenberg, J. T., (2018). Learning by Playing-Solving Sparse Reward Tasks
from Scratch. arXiv preprint arXiv:1802.10567.

Rusu, A. A., Vecerik, M., Rothorl, T., Heess, N., Pascanu, R., Hadsell, R. (2017). Sim-to-Real
robot learning from pixels with progressive nets. In Proceedings of the 2nd Conference on Robot
Learning, pp: 262-270.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P. (2015). Trust region policy optimization.
In Proceedings of the 32nd International Conference on Machine Learning, pp:1889—-1897.

https://github.com/openai/baselines

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O. (2017). Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347.

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., de Las Casas, D., Budden, D., Abdolmaleki, A.,
Merel, J., Lefrancq, A., Lillicrap, T., and Riedmiller, M. (2018). DeepMind control suite. arXiv
preprint arXiv:1801.00690.

Travnik, J. B., Mathewson, K. W., Sutton, R. S., Pilarski, P. M. (2018). Reactive Reinforcement
Learning in Asynchronous Environments. arXiv preprint arXiv:1802.06139.

Tukey, J. W. (1977). Box-and-whisker plots. Exploratory data analysis, pp: 39—43.

Waulfmeier, M., Posner, 1., Abbeel, P. (2017). Mutual alignment transfer learning. arXiv preprint
arXiv:1707.07907.

Yahya, A., Li, A., Kalakrishnan, M., Chebotar, Y., Levine, S. (2017). Collective robot reinforcement
learning with distributed asynchronous guided policy search. In 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp: 79-86.

10

Appendix

A.1 Additional details of the robots

Here, we provide additional details on the hardware setup between the robots and the control com-
puters. All of our setups use wired connections. The URS arm controller is communicated with the
control computer over a TCP/IP connection. We use an Xevelabs USB2AX controller to interface
between the MX-64AT actuators and a control computer via USB. A 12V, 5A DC power adapter is
used to power the actuators. The Create 2 robot is interfaced with a control computer via serial port
using iRobot’s specified Open Interface. The robot is communicated in the streaming mode where
the internal controller streams a data packet every 15ms, which is the rate the internal controller uses
to update data.

A.2 Additional details of Create-Docker

In Create-Docker, the objective is to dock to a charging station attached to the middle of one of
the wider walls of the Create-Mover arena. When the robot is at the charging station in such a
way that the binary charging signal is active, the internal robot controller switches the operating
mode to Passive, in which the actuation commands for the wheels from the external computer are
ignored. Being in this state with an active charging signal is considered a successful docking. The
internal controller does not switch to the Passive mode right away after an active charging signal.
Therefore, it is possible to have an active charging signal momentarily but still not dock successfully
due to a high speed in the backward direction or bouncing back from the station. Moreover, it is
extremely difficult to activate the charging signal properly if the robot approaches the charging
station at an angle. Therefore, to learn how to dock, it is important to approach the charging station
perpendicularly and learn to slow down or stop when the charging signal is active.

The action space for Create-Docker is the same as for Create-Mover, that is,
[~150mm /s, 150mm/s]? for actuating the two wheels with speed control. The observation
vector is 20-dimensional, consisting of a single binary charging signal, six infrared wall signals, two
bump signals, two action components from the previous time step, and nine additional components
processed based on the three infrared bytes from the charging station. Each infrared byte informs
whether the left buoy, the right buoy and the force field of the dock beam configuration can be seen,
from which we obtain nine binary values. Each of these binary values are then averaged over last
20 packets streamed from the robot’s internal controller every 15ms.

The reward function is a large positive number for successful docking with penalty for bumping
and encouragement for moving forward and facing the charging station perpendicularly. The reward
function for every time-step is defined as follows:

Rt :T(G,Xt+b}/,§+CZt+d‘/Ig), (1)

where 7 is the action cycle time, X, is the docking reward, Y; is bumping penalty, Z; is the moving
bonus and V; is the bonus for aligning to the charging station. These components are defined as
follows:

n

2

X = AT D) ;(n — i+ 1)pi(charging, i) 2)
2 n
Y ==Y | pi(bumpy, i) 3)
k=11i=1
I : ‘
Ty = - ZZ:;pt(dzstcmce, i))
12009
V, = 20 z; kz wipe|ir-docky,). 5)
i=1 k=1

Here, p¢[x, ¢] stands for the ith most-recent data packet available at time step ¢ for sensor x, where
charging stands for charging sensor, bumpy, stands for kth bump sensor, distance stands for the

11

distance sensor and ¢r_docky, stands for the kth sensor value for the infrared receiver for docking.
The weights used for ir_dock are w = [1.0,0.5,0.05,0.65,0.15,0.65,0.05,0.5, 1.0], which are
chosen in such a way that the left receiver (first three values) focuses on the left buoy, the right
receiver (last three values) focuses on the right buoy and the omni-directional receiver (middle three
values) focuses on both buoy equally. The value of n is the ratio between action cycle time and
the read-write cycle time, that is, n = g5 The weights of the different reward components are
a = 150, b = 10, ¢ = 5, and d = 4. They are chosen in such a way that the maximums of the penalty
and the two bonuses are of the same magnitude scale and the docking reward is much larger than the
auxiliary reward components. If docking is successful, the robot stays at the charging station for the
rest of the episode and continues to receive the docking reward. This encourages docking as soon as
possible.

An episode is always 30 seconds long. We designed the reset between episodes in such a way that
docking is relatively easier for the initial policy if the previous episode is unsuccessful and it is rel-
atively more difficult if the previous episode is successful, that is, the episode terminated while the
robot is docked. To achieve this, the reset procedure first invokes the internal seek-dock routine of
Open Interface to dock to the station if the previous episode is unsuccessful. After the robot docks
using seek-dock or a time-out of 20 seconds, the robot moves backward for 3.25 seconds. If the
seek-dock succeeds, the robot is always facing the charging station after reset and can dock success-
fully by learning to move straight in the forward direction. However, if the seek-dock routine does
not succeed, then the robot may start from a difficult starting position, for example, at one of the
corners of the arena facing the wall. If the previous episode is successful, then the reset procedure
makes the robot move backward for 0.75 seconds and then sends uniform random speeds for 2.5
seconds to the two wheels independently between [—250, —50] to move backward further rotation-
ally. This last phase ensures that the robot is likely not facing the charging station perpendicularly
and displacement is required to achieve alignment.

A.3 Ranges of hyper-parameter values for random search

TRPO:

Hyperparameter Range
batch size 918,13]
vi-step-size 10[=5—2]
OKL 10[-2:5,-0.5]
Cy 10Mlog10(10/N),1.5]
1
v - L5
Cx 10llog10(10/N),1.5]
A _ lN
[
hidden layers [, 4>]
hidden sizes 9[3,X]

Here, N = T/, where T is the total length of an episode in time and 7 is the action cycle time. We
restricted total number of weights in the network to be no larger than 100,000, and the upper limit
of a hidden size X was determined based on sampled number of hidden layers to respect this limit.

12

PPO:

Soft-Q:

DDPG:

Hyperparameter Range
batch size 98,13
step-size 10=5—2]
opt. batch size | 2[3: 1og;(batchsize)]
Cy 100810(10/N),1.5]
v 1 - c 1N
e 10l10810(10/N),1.5]
)\ - cklN
hidden layers [1,4]
hidden sizes 9[3,X]
Hyperparameter Range
batch size 918,13]
step size 10[=5,—2]
epochs 2l0, 2]
Cy 10[10g10(10/N),1.5]
v - cwlN
reward scale 10[0 2]
hidden layers [1,4]
hidden sizes 2[3:X]
Hyperparameter Range
batch size 9oI8,13]
step size 10[=5—2]
exploration o 101=2; logy 3]
Cy 10[log10(10/N),1.5]
v - cwlN
reward scale 1000, 2]
hidden layers [1,4]
hidden sizes 9[3,X]

A.4 Details of scripted agents

For URS tasks, we use the movej command of URScript, where we specify the joint angles for
the target positions and set the time to reach to 2 seconds. For DXL tasks, we implement a PID
controller. We do not constrain the current control values as we do for the learning agent, and we
chose the optimal PID gain value for each task separately. For Create-Mover, we use a simple script
that applies action [—150mm/s, +150mm/s] whenever the normalized signal value of either of the
two front wall sensors has its value above 0.55 and otherwise, moves straight forward with action
[+150mm/s, +150mm/s]. For Create-Docker, we use the seek-dock routine of Open Interface.
During this routine, the robot moves back and forth to perceive the vertical plane perpendicular to
the wall at the charging station using the infrared bytes from the charging station, adjusts its position
to align its principle axis with the perpendicular plane, and moves slowly toward the charging station.

13

A.S Details of repeatability experiments with TRPO

To generate the plots in Figure 2, we run the same experiment with the same seed four times on
five different tasks using TRPO. There are different kinds of randomization in each task. For the
agent, randomization is used to initialize the network and sample actions. For the environment,
randomization is used to generate targets and resets. By using the same randomization seed across
multiple experiments in this set of experiments, we ensure that the environment generates the same
sequence of targets and resets, the agent is initialized with the same network, and it generates the
same or similar sequence of actions for a particular task. We use the same hyper-parameter values
of TRPO used in the experiments by Henderson et al. (2017).

14

A.6 Relative performance of different algorithms in random search

In the figure below, we show the relative performance of four algorithms across 30 random hyper-
parameters configurations ordered by performance. Note that for different algorithms, parameter
configurations with the same index generally correspond to different parameter values.

200 —
150 -

100 -

Average w0
Returns

-50 o

—100 -

—150 -

UR-Reacher-2

oty Soft-Q

*
+* *

TRPO *+,% %+,

L
* 4

* PPO .. *
i ‘-l-l-irooo,“, Ty
DDPG ~Tttes,, .

L

-15

—-20

—25 -

-30

-35 -

—40

—45

—-50

DXL-Reacher

Lt TRPO
* Soft—d.l-o“
"o. PPO .6¢ *

Figure 7: All random parameter configurations of all four algorithms on UR-Reacher-2 and DXL-

Reacher.

15

A.7 All hyper-parameter configurations, their value distributions and
correlations with returns

In the following table, we show parameter values for all 30 configurations and their corresponding
average returns for TRPO on UR-Reacher-2. The configurations are shown in descending order
according to average returns.

Average | batch | vf-step-size 0K ¥ A hidden | hidden
Return size layers sizes
158.56 | 4096 0.00472 0.02437 | 0.96833 | 0.99874 2 64
138.58 | 2048 0.00475 0.01909 | 0.99924 | 0.99003 1 128
131.35 | 8192 0.00037 0.31222 | 0.97433 | 0.99647 4 64
123.45 | 4096 0.00036 0.01952 | 0.99799 | 0.92958 4 128
122.60 | 2048 0.00163 0.00510 | 0.96801 | 0.96893 4 32
115.51 | 4096 0.00926 0.01659 | 0.99935 | 0.99711 3 8
103.18 | 4096 0.00005 0.21515 | 0.99891 | 0.99880 1 8
100.38 | 8192 0.00005 0.09138 | 0.99677 | 0.99959 1 64
95.47 2048 0.00001 0.06088 | 0.98488 | 0.99957 2 128
94.16 2048 0.00770 0.02278 | 0.99414 | 0.98684 3 128
88.57 4096 0.00282 0.02312 | 0.99813 | 0.99964 4 16
65.44 512 0.00054 0.01882 | 0.99728 | 0.99420 3 32
63.60 8192 0.00009 0.10678 | 0.97415 | 0.99759 2 128
60.79 1024 0.00007 0.02759 | 0.99945 | 0.99961 3 8
60.51 4096 0.00222 0.00392 | 0.98544 | 0.98067 4 8
60.35 8192 0.00004 0.25681 | 0.99750 | 0.98955 2 128
59.39 1024 0.00435 0.00518 | 0.99516 | 0.99867 4 32
52.70 8192 0.00001 0.03385 | 0.99119 | 0.98400 4 32
51.44 512 0.00034 0.01319 | 0.97334 | 0.98524 4 16
41.05 512 0.00001 0.00351 | 0.99430 | 0.99781 3 8

17.14 8192 0.00023 0.01305 | 0.95963 | 0.99950 3 32

11.43 512 0.00251 0.00532 | 0.99447 | 0.99951 3 64

11.13 512 0.00003 0.00727 | 0.99686 | 0.93165 1 256
-10.57 256 0.00065 0.04867 | 0.99926 | 0.98226 1 16
-16.48 8192 0.00001 0.31390 | 0.99948 | 0.99204 2 16
-19.78 512 0.00005 0.15077 | 0.96836 | 0.99944 3 64
-32.85 256 0.00003 0.12650 | 0.99260 | 0.98021 4 128
-43.74 | 8192 0.00018 0.00333 | 0.98940 | 0.97090 3 8
-54.55 512 0.00011 0.07420 | 0.99402 | 0.90185 1 2048
-125.13 256 0.00002 0.05471 | 0.99961 | 0.99877 4 32

Table 1: The parameter values and corresponding average returns for all 30 hyper-parameter con-
figurations of TRPO on UR-Reacher-2.

16

In the figure below, we show the best 5 (in red) and the worst 5 (in blue) hyper-parameter values
out of 30 random configurations of TRPO on UR-Reacher-2. On each plot the x axis represents pa-
rameter values and the y axis represents average returns obtained during the corresponding run. For
each hyper-parameter, we also show correlations between log-parameter values and corresponding
returns.

batch size, correlation: 0.49
L

100

—100

103
y, correlation: 0.15

100

—100
9x 107! 100

hidden layers, correlation: -0.02
100f ’ .
[] : e
-100

[]
100 2x10° 3x10° 4 x10°

hidden sizes, correlation: -0.06

100

—100

102 103
A, correlation: -0.13

100

—-100
9x 1071 100

Ok, correlation: -0.06
®
° L °

100

-100

102 101

vf-step-size, correlation: 0.48
(4 o)

100

-100

105 104 103 102

Figure 8: Average returns (y axis) vs. parameter values (x axis) for best 5 and worst 5 hyper-
parameter configurations of TRPO on UR-Reacher-2.

17

Average | batch | vf-step-size OKL vy A hidden | hidden
Return size layers sizes
-15.11 512 0.00251 0.00532 | 0.99216 | 0.99907 3 64
-15.53 512 0.00054 0.01882 | 0.99580 | 0.99183 3 32
-15.54 256 0.00065 0.04867 | 0.99867 | 0.97815 1 16
-15.76 512 0.00034 0.01319 | 0.96874 | 0.98142 4 16
-16.52 | 2048 0.00001 0.06088 | 0.98102 | 0.99918 2 128
-16.61 | 2048 0.00770 0.02278 | 0.99175 | 0.98320 3 128
-17.03 | 4096 0.00005 0.21515 | 0.99812 | 0.99796 1 8
-17.24 | 1024 0.00435 0.00518 | 0.99304 | 0.99777 4 32
-18.44 | 2048 0.00163 0.00510 | 0.96331 | 0.96423 4 32
-19.21 1024 0.00007 0.02759 | 0.99897 | 0.99924 3 8
-19.29 512 0.00011 0.07420 | 0.99161 | 0.90163 1 2048
-19.51 | 4096 0.00282 0.02312 | 0.99699 | 0.99929 4 16
-20.07 | 8192 0.00009 0.10678 | 0.96958 | 0.99622 2 128
-20.12 | 8192 0.00001 0.31390 | 0.99902 | 0.98921 2 16
-20.30 | 4096 0.00036 0.01952 | 0.99678 | 0.92655 4 128
-20.45 | 8192 0.00004 0.25681 | 0.99610 | 0.98628 2 128
-20.45 | 4096 0.00472 0.02437 | 0.96363 | 0.99786 2 64
-21.28 512 0.00003 0.00727 | 0.99524 | 0.92844 1 256
-21.37 | 8192 0.00037 0.31222 | 0.96976 | 0.99472 4 64
-21.73 | 4096 0.00926 0.01659 | 0.99880 | 0.99558 3 8
-23.17 512 0.00001 0.00351 | 0.99195 | 0.99653 3 8
-23.47 | 8192 0.00005 0.09138 | 0.99512 | 0.99921 1 64
-23.54 | 8192 0.00001 0.03385 | 0.98820 | 0.98005 4 32
-26.75 256 0.00003 0.12650 | 0.98987 | 0.97595 4 128
-27.02 | 8192 0.00023 0.01305 | 0.95497 | 0.99905 3 32
-27.05 | 2048 0.00475 0.01909 | 0.99864 | 0.98684 1 128
-27.64 256 0.00002 0.05471 | 0.99924 | 0.99792 4 32
-28.02 | 4096 0.00222 0.00392 | 0.98164 | 0.97644 4 8
-31.20 512 0.00005 0.15077 | 0.96366 | 0.99895 3 64
-33.33 | 8192 0.00018 0.00333 | 0.98611 | 0.96624 3 8

Table 2: The parameter values and corresponding average returns for all 30 hyper-parameter con-
figurations of TRPO on DXL-Reacher.

18

batch size, correlation: -0.16
b °
_20,
30} ° ‘ e
1 (]
103
y, correlation: -0.14
° ® o o
_20,
N
—-30t . .
9x 107! 10°
hidden layers, correlation: -0.15
o ° [°
_20,
° °
301 s
10° 2x10° 3 x 10° 4 %100
hidden sizes, correlation: 0.10
° [] L] [
_20,
[]
30t ° ¢ .
(]
10! 102
A, correlation: -0.04
° ° [
_20,
° L4 °
—30t . .
9x107! 10°
6k, correlation: 0.06
® ° ° ° °
_20,
°)
—30t =
10-2 101
vf-step-size, correlation: 0.22
[] [] o o
_20.
30} ¢ e ‘
[]
10-° 1074 103
Figure 9: Average return (y axis) vs. parameter values (x axis) for best 5 and worst 5 hyper-

parameter configurations of TRPO on DXL-Reacher.

19

Average | batch | step-size opt. vy A hidden | hidden
Return size batch size layers sizes
176.62 512 | 0.00005 16 0.96836 | 0.99944 3 64
150.25 256 | 0.00050 64 0.99926 | 0.98226 1 16
137.92 512 | 0.00011 8 0.99402 | 0.90185 1 2048
137.26 | 2048 | 0.00163 1024 0.96801 | 0.96893 4 32
136.09 | 2048 | 0.00280 32 0.99924 | 0.99003 1 128
128.34 | 4096 | 0.00036 64 0.99799 | 0.92958 4 128
118.77 512 | 0.00003 32 0.99686 | 0.93165 1 256
112.48 | 4096 | 0.00941 1024 0.98544 | 0.98067 4 8
110.01 | 4096 | 0.00080 8 0.99935 | 0.99711 3 8
107.47 | 4096 | 0.00267 4096 0.96833 | 0.99874 2 64
95.62 8192 | 0.00226 32 0.97433 | 0.99647 4 64
82.21 8192 | 0.00037 16 0.99119 | 0.98400 4 32
78.97 512 | 0.00090 128 0.99430 | 0.99781 3 8
73.33 4096 | 0.00079 32 0.99813 | 0.99964 4 16
73.17 256 | 0.00003 16 0.99260 | 0.98021 4 128
56.25 8192 | 0.00987 32 0.99948 | 0.99204 2 16
49.02 8192 | 0.00019 64 0.99677 | 0.99959 1 64
29.70 1024 | 0.00039 256 0.99945 | 0.99961 3 8
25.94 8192 | 0.00362 32 0.97415 | 0.99759 2 128
18.64 4096 | 0.00061 512 0.99891 | 0.99880 1 8
-1.68 8192 | 0.00006 2048 0.99750 | 0.98955 2 128
-20.53 | 8192 | 0.00087 2048 0.98940 | 0.97090 3 8
-31.58 | 1024 | 0.00315 256 0.99516 | 0.99867 4 32
-49.32 512 | 0.00680 128 0.99728 | 0.99420 3 32
-62.46 | 2048 | 0.00002 2048 0.99414 | 0.98684 3 128
-64.50 | 2048 | 0.00002 1024 0.98488 | 0.99957 2 128
-79.45 | 8192 | 0.00002 256 0.95963 | 0.99950 3 32
-84.29 512 | 0.00002 256 0.97334 | 0.98524 4 16
-94.34 512 | 0.00645 32 0.99447 | 0.99951 3 64
-134.43 | 256 | 0.00689 128 0.99961 | 0.99877 4 32

Table 3: The parameter values and corresponding average returns for all 30 hyper-parameter con-
figurations of PPO on UR-Reacher-2.

20

batch size, correlation: 0.06

1007

—-100¢

103
y, correlation: -0.01

1007

—100¢f (] ° 4
9x 107! 100

hidden layers, correlation: -0.21
0 °

100}

[]
I]
-100 ‘ .
100 2 x10° 3x10° 4 x10°

hidden sizes, correlation: 0.13
° ° ° ° °

100}

—100¢} e .
10! 102 103

A, correlation: 0.36

1007

—100} . !
9x 107! 100

opt. batch size, correlation: -0.37

1007

L e L) ®
—-100 o

101 102 103

step-size, correlation: 0.05

1007

—100¢

104 1073

Figure 10: Average returns (y axis) vs. parameter values (x axis) for best 5 and worst 5 hyper-
parameter configurations of PPO on UR-Reacher-2.

21

Average | batch | step-size opt. vy A hidden | hidden
Return size batch size layers sizes
-17.46 512 | 0.00680 128 0.99580 | 0.99183 3 32
-19.68 | 1024 | 0.00315 256 0.99304 | 0.99777 4 32
-20.34 512 | 0.00005 16 0.96366 | 0.99895 3 64
-20.45 256 | 0.00003 16 0.98987 | 0.97595 4 128
-20.57 512 | 0.00090 128 0.99195 | 0.99653 3 8
-20.91 512 | 0.00011 8 0.99161 | 0.90163 1 2048
-22.26 | 2048 | 0.00280 32 0.99864 | 0.98684 1 128
-22.56 256 | 0.00050 64 0.99867 | 0.97815 1 16
-23.45 | 2048 | 0.00163 1024 0.96331 | 0.96423 4 32
-24.66 | 4096 | 0.00036 64 0.99678 | 0.92655 4 128
-25.67 | 4096 | 0.00941 1024 0.98164 | 0.97644 4 8
-26.40 | 4096 | 0.00061 512 0.99812 | 0.99796 1 8
-26.43 512 | 0.00003 32 0.99524 | 0.92844 1 256
-26.68 | 4096 | 0.00080 8 0.99880 | 0.99558 3 8
-26.69 | 4096 | 0.00079 32 0.99699 | 0.99929 4 16
-27.14 256 | 0.00689 128 0.99924 | 0.99792 4 32
-27.66 | 8192 | 0.00226 32 0.96976 | 0.99472 4 64
-28.56 | 8192 | 0.00037 16 0.98820 | 0.98005 4 32
-28.56 | 4096 | 0.00267 4096 0.96363 | 0.99786 2 64
-32.47 | 8192 | 0.00006 2048 0.99610 | 0.98628 2 128
-32.65 | 8192 | 0.00362 32 0.96958 | 0.99622 2 128
-32.66 | 8192 | 0.00019 64 0.99512 | 0.99921 1 64
-33.00 | 2048 | 0.00002 1024 0.98102 | 0.99918 2 128
-34.32 | 2048 | 0.00002 2048 0.99175 | 0.98320 3 128
-34.34 512 | 0.00002 256 0.96874 | 0.98142 4 16
-34.46 | 8192 | 0.00087 2048 0.98611 | 0.96624 3 8
-34.56 | 8192 | 0.00987 32 0.99902 | 0.98921 2 16
-34.79 | 8192 | 0.00002 256 0.95497 | 0.99905 3 32
-37.00 | 1024 | 0.00039 256 0.99897 | 0.99924 3 8
-38.49 512 | 0.00645 32 0.99216 | 0.99907 3 64

Table 4: The parameter values and corresponding average returns for all 30 hyper-parameter con-
figurations of PPO on DXL-Reacher.

22

batch size, correlation: -0.43

-20f : .
_30,
[]
° (]
103
y, correlation: -0.06
—20¢t ® o o® ¢
_30,
° L] :
[]
9x107! 10°
hidden layers, correlation: 0.05
—20} . N
_30,
° [
|
2x10° 3x10° 4x10°
hidden sizes, correlation: 0.13
[]
—20¢ . e ° .
_30,
: [] []
[]
].0:l 102
A, correlation: 0.29
—20¢ ° LN
_30,
[] [} ;
9x 107! 10°
opt. batch size, correlation: -0.30
-20f e . .
_30,
[] (] []
° []
10? 10°
step-size, correlation: 0.15
—20¢f e o . e ¢
_30,
[] [[]
bt °
107 1074 1073 1072

Figure 11: Average returns (y axis) vs. parameter values (x axis) for best 5 and worst 5 hyper-
parameter configurations of PPO on DXL-Reacher.

23

Average | batch | step size | epochs vy reward | hidden | hidden
Return size scale layers sizes
186.99 256 | 0.00362 1 0.97415 | 17.24280 2 128
175.97 128 | 0.00267 2 0.96833 | 44.86500 2 64
160.74 256 | 0.00510 2 0.95963 | 8.34880 3 32
155.90 256 | 0.00226 1 0.97433 | 51.77960 4 64
152.24 64 0.00015 1 0.96801 | 9.17668 4 32
142.35 256 | 0.00987 1 0.99948 | 3.96065 2 16
141.76 128 | 0.00282 1 0.99813 | 7.31247 4 16
137.99 16 0.00034 4 0.97334 | 4.17074 4 16
128.37 16 0.00165 1 0.99402 | 15.26740 1 2048
127.41 32 0.00315 1 0.99516 | 7.33271 4 32
114.66 256 | 0.00005 4 0.98940 | 10.39050 3 8
105.15 256 | 0.00009 1 0.99750 | 3.29365 2 128
99.05 64 0.00002 2 0.99414 | 1.98432 3 128
95.70 128 | 0.00205 1 0.99935 | 18.56150 3 8
84.29 64 0.00028 4 0.99924 | 42.82680 1 128
81.99 64 0.00101 1 0.98488 | 1.33883 2 128
72.14 256 | 0.00019 2 0.99677 | 9.93572 1 64
67.54 8 0.00050 4 0.99926 | 4.92276 1 16
48.84 128 | 0.00222 2 0.98544 | 1.23942 4 8
44.17 16 0.00680 1 0.99728 | 3.10793 3 32
38.84 16 0.00645 4 0.99447 | 1.47516 3 64
27.85 16 0.00022 1 0.96836 | 1.31096 3 64
-20.55 8 0.00003 1 0.99260 | 19.36990 4 128
-26.10 16 0.00003 4 0.99686 | 3.89039 1 256
-26.97 256 | 0.00001 1 0.99119 | 1.36652 4 32
-42.94 128 | 0.00002 2 0.99799 | 23.75010 4 128
-85.84 128 | 0.00044 4 0.99891 | 31.71700 1 8
-87.05 8 0.00689 1 0.99961 | 16.78260 4 32
-87.38 16 0.00001 2 0.99430 | 1.11021 3 8
-87.52 32 0.00007 1 0.99945 | 8.72575 3 8

Table 5: The parameter values and corresponding average returns for all 30 hyper-parameter con-
figurations of Soft-Q on UR-Reacher-2.

24

batch size, correlation: 0.42
200 " . H
0,
[]
[J } [] [] } [
10! 102
200 y, correlation: 0.46
° e H
0,
[]
[) L
9x107?! 10°
200 hidden layers, correlation: -0.05
(] o .
07 []
l'l [] L]
100 2x10° 3x10° 4 x10°
200 hidden sizes, correlation: 0.19
o s °
o,
[]
[] | [|
10! 102
epochs, correlation: -0.12
2
o :
O’ []
lvi [J (]
100 2x10° 3x10° 4 x10°
reward scale, correlation: 0.18
200 . ry
o9)
O,
[]
[[] []
10° 10!
200 step-size, correlation: 0.46
° o ® °
o,
o | ° | °
10~ 103

Figure 12: Average returns (y axis) vs. parameter values (x axis) for best 5 and worst 5 hyper-

parameter configurations of Soft-Q on UR-Reacher-2.

25

Average | batch | step size | epochs ~ reward | hidden | hidden
Return size scale layers sizes
-15.82 128 | 0.00002 2 0.99678 | 23.75010 4 128
-16.29 128 | 0.00267 2 0.96363 | 44.86500 2 64
-16.50 64 0.00028 4 0.99864 | 42.82680 1 128
-16.87 128 | 0.00205 1 0.99880 | 18.56150 3 8
-18.19 64 0.00015 1 0.96331 | 9.17668 4 32
-18.95 256 | 0.00226 1 0.96976 | 51.77960 4 64
-19.57 128 | 0.00282 1 0.99699 | 7.31247 4 16
-19.86 32 0.00315 1 0.99304 | 7.33271 4 32
-20.39 128 | 0.00044 4 0.99812 | 31.71700 1 8
-20.60 8 0.00689 1 0.99924 | 16.78260 4 32
-21.13 16 0.00165 1 0.99161 | 15.26740 1 2048
-21.43 256 | 0.00362 1 0.96958 | 17.24280 2 128
-22.39 256 | 0.00009 1 0.99610 | 3.29365 2 128
-22.60 256 | 0.00987 1 0.99902 | 3.96065 2 16
-22.89 16 0.00034 4 0.96874 | 4.17074 4 16
-23.32 256 | 0.00510 2 0.95497 | 8.34880 3 32
-23.76 256 | 0.00005 4 0.98611 | 10.39050 3 8
-24.50 8 0.00003 1 0.98987 | 19.36990 4 128
-25.37 16 0.00680 1 0.99580 | 3.10793 3 32
-25.44 256 | 0.00019 2 0.99512 | 9.93572 1 64
-26.35 8 0.00050 4 0.99867 | 4.92276 1 16
-28.30 64 0.00002 2 0.99175 | 1.98432 3 128
-28.45 16 0.00645 4 0.99216 | 1.47516 3 64
-29.49 128 | 0.00222 2 0.98164 | 1.23942 4 8
-30.06 64 0.00101 1 0.98102 | 1.33883 2 128
-31.12 16 0.00022 1 0.96366 | 1.31096 3 64
-32.15 256 | 0.00001 1 0.98820 | 1.36652 4 32
-33.83 32 0.00007 1 0.99897 | 8.72575 3 8
-33.89 16 0.00003 4 0.99524 | 3.89039 1 256
-34.35 16 0.00001 2 0.99195 | 1.11021 3 8

Table 6: The parameter values and corresponding average returns for all 30 hyper-parameter con-
figurations of Soft-Q on DXL-Reacher.

26

batch size, correlation: 0.31

=201 $ ‘
30
. 0 ‘ °
10?2
y, correlation: -0.08
: v
20
_30' [° R
e ©
9x107! 100
hidden layers, correlation: 0.05
° ° ° :
20
30
l‘i : °
10° 2 x10° 3x10° 4 x10°
hidden sizes, correlation: 0.10
20 * ° : ‘
—30' . ° [.
10! 102
epochs, correlation: -0.08
! [°
20
30
!} [[]
100 2x10° 3x10° 4 x10°
reward scale, correlation: 0.78
° ° ['
20
—30' ..
T . . . T
100 101
step-size, correlation: 0.39
[] ° ° o ©
20
=301 ° °
T . . . T T
1073 1074 1073

Figure 13: Average returns (y axis) vs. parameter values (x axis) for best 5 and worst 5 hyper-
parameter configurations of Soft-Q on DXL-Reacher.

27

Average | batch | step size | exploration o reward | hidden | hidden
Return size o scale layers sizes
-5.16 128 | 0.00079 0.06797 0.97332 | 0.09400 2 64
-5.83 16 0.00077 0.10204 0.98430 | 2.02647 1 8
-22.24 128 | 0.00222 0.62454 0.98658 | 0.01536 1 16
-46.63 256 | 0.00019 0.12286 0.95695 | 0.98719 4 16
-59.76 16 0.00005 1.44343 0.99891 | 22.73270 1 2048
-77.93 256 | 0.00879 1.16057 0.99604 | 25.75380 1 32
-82.78 64 0.00002 0.65027 0.96275 | 4.68798 1 4096
-88.01 256 | 0.00002 1.87801 0.97475 | 40.72840 2 64

-90.53 128 | 0.00205 0.02196 0.99638 | 3.44530 4 8
-90.61 8 0.00004 0.30090 0.99967 | 0.04820 1 16
-91.54 256 | 0.00226 1.15201 0.99884 | 26.81130 4 8
-92.28 128 | 0.00016 1.44501 0.98836 | 17.21490 4 16
-92.46 16 0.00011 0.23885 0.99942 | 5.50558 1 4096
-92.92 16 0.00034 1.19977 0.99865 | 0.17395 4 32
-95.66 64 0.00163 1.46053 0.99909 | 0.02602 1 8192
-95.83 8 0.00065 0.02490 0.98394 | 2.36859 3 128
-97.56 256 | 0.00018 0.44355 0.99953 | 0.01111 1 128
-98.08 256 | 0.00001 0.01707 0.99033 | 98.53480 1 128
-98.48 32 0.00007 0.01814 0.98696 | 0.76139 4 128
-100.04 16 0.00095 0.11919 0.98391 | 0.05247 3 32
-101.92 | 256 | 0.00004 0.09315 0.99299 | 65.95210 4 64
-107.01 | 256 | 0.00002 0.36305 0.99880 | 1.24702 1 16
-108.30 | 128 | 0.00005 0.03798 0.95782 | 44.52130 3 32
-111.22 8 0.00161 0.01244 0.95337 | 0.02076 1 1024
-111.34 | 128 | 0.00002 0.07381 0.94064 | 5.64068 1 16
-117.14 64 0.00770 0.23378 0.99884 | 0.51910 2 16
-117.91 16 0.00251 0.21979 0.99915 | 0.02826 3 64
-119.55 32 0.00435 0.18999 0.98651 | 0.02679 1 8
-119.85 16 0.00001 0.22683 0.98117 | 0.01233 4 16
-123.91 64 0.00475 0.02562 0.99548 | 0.36455 4 64

Table 7: The parameter values and corresponding average returns for all 30 hyper-parameter con-
figurations of DDPG on UR-Reacher-2.

28

batch size, correlation:

0.11

-50 s

—100

102
0.14

exploration g, correlation:
® []

-50 L

—100

10-!

y, correlation: 0.19

-50 L]

—100

9x1071!

-0.21

hidden layers, correlation:
@
[]

=50 ®

-100
° °

100 2 x 100

hidden sizes, correlation:

3x10°
-0.05

4 %100

0 0 0
-50 °

—100

10! 102

reward scale, correlation:

0.03

103

0 g
=50 'y

—100

102 10-! 100

step-size, correlation:

0.08

101

-50 ~ °

—100

105 104

Figure 14: Average returns (y axis) vs. parameter values (x axis) for best 5 and worst 5 hyper-

parameter configurations of DDPG on UR-Reacher-2.

29

103

102

Average | batch | step size | exploration o reward | hidden | hidden
Return size o scale layers sizes
-21.89 16 0.00077 0.10204 0.98038 | 2.02647 1 8
-23.52 32 0.00007 0.01814 0.98334 | 0.76139 4 128
-25.42 128 | 0.00205 0.02196 0.99460 | 3.44530 4 8
-27.41 64 0.00002 0.65027 0.95804 | 4.68798 1 4096
-28.71 256 | 0.00019 0.12286 0.95235 | 0.98719 4 16
-30.41 256 | 0.00002 0.36305 0.99796 | 1.24702 1 16
-30.80 16 0.00034 1.19977 0.99773 | 0.17395 4 32
-31.39 256 | 0.00879 1.16057 0.99416 | 25.75380 1 32
-32.06 128 | 0.00222 0.62454 0.98291 | 0.01536 1 16
-32.52 16 0.00005 1.44343 0.99812 | 22.73270 1 2048
-34.27 128 | 0.00016 1.44501 0.98492 | 17.21490 4 16
-34.90 256 | 0.00018 0.44355 0.99910 | 0.01111 1 128
-36.99 16 0.00011 0.23885 0.99893 | 5.50558 1 4096
-37.20 256 | 0.00001 0.01707 0.98719 | 98.53480 1 128
-37.61 256 | 0.00226 1.15201 0.99802 | 26.81130 4 8
-37.70 64 0.00163 1.46053 0.99839 | 0.02602 1 8192
-38.22 32 0.00435 0.18999 0.98283 | 0.02679 1 8
-38.23 128 | 0.00002 0.07381 0.93680 | 5.64068 1 16
-38.42 256 | 0.00002 1.87801 0.97020 | 40.72840 2 64
-38.67 8 0.00004 0.30090 0.99935 | 0.04820 1 16
-39.69 16 0.00001 0.22683 0.97697 | 0.01233 4 16
-40.63 64 0.00770 0.23378 0.99801 | 0.51910 2 16
-41.41 128 | 0.00079 0.06797 0.96872 | 0.09400 2 64
-42.16 8 0.00065 0.02490 0.97999 | 2.36859 3 128
-43.82 16 0.00095 0.11919 0.97995 | 0.05247 3 32
-44.08 16 0.00251 0.21979 0.99849 | 0.02826 3 64
-46.25 64 0.00475 0.02562 0.99344 | 0.36455 4 64
-48.74 256 | 0.00004 0.09315 0.99034 | 65.95210 4 64
-49.23 128 | 0.00005 0.03798 0.95320 | 44.52130 3 32
-49.98 8 0.00161 0.01244 0.94889 | 0.02076 1 1024

Table 8: The parameter values and corresponding average returns for all 30 hyper-parameter con-
figurations of DDPG on DXL-Reacher.

30

batch size, correlation: 0.12
[]

—30} d °

—401 .

—50¢t L : ° | o °
101 102

exploration o, correlation: 0.25
®

—-30+ (]
—40} .
—50b_ e * . .

1072 107t

y, correlation: -0.08

—-30+ ()
—40+

—50¢ o o d
9x 1071 100

hidden layers, correlation: -0.10

—-30+
40+
(]

-50L e - $
100 2x100 3% 100 4% 100

hidden sizes, correlation: -0.10
[]

—-30+]
—40+

—50t : . ! :]
10! 102 103

reward scale, correlation: 0.11
° [J
[® e

—30+
40+

—50¢t i e : : | o o
1072 107! 100 10! 102

step-size, correlation: -0.10
Py ®

—30t L. °
40

10-5 104 103

Figure 15: Average returns (y axis) vs. parameter values (x axis) for best 5 and worst 5 hyper-
parameter configurations of DDPG on DXL-Reacher.

31

	Introduction
	Robots
	Tasks
	Reinforcement learning algorithms
	Experiment Protocol
	Experimental results and discussion
	Conclusions

